Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Environ Sci Technol ; 57(39): 14602-14610, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37713478

RESUMEN

Deep-sea sediments (>1000 m) are often considered to be the ultimate sink for black carbon (BC), and the long-term buried BC in these sediments is believed to potentially provide a negative feedback effect on climate warming. The burial flux of BC in marine sediments is predominantly estimated based on soot BC (SBC) in most studies, frequently ignoring the contribution of char BC (CBC). While this methodology may result in an underestimation of the BC burial flux, the precise extent of this underestimation is yet to be determined. This study used the benzene poly(carboxylic acid) (BPCA) method and chemothermal oxidation (CTO) method to analyze CBC and SBC in four deep-sea sediment cores from the Zhongnan seamount in the South China Sea, respectively. The CBC content increased from 0.026 ± 0.010% at the seamount upper part (1432 m) to 0.039 ± 0.012% at the seamount foot (4278 m), constituting approximately 25 to 42% of the SBC content. The content disparity between CBC and SBC diminishes as depth increases. In deep-sea sediments, biogeochemical factors influence the variation of CBC molecules with depth. In the seamount middle-upper part (1432 and 2465 m), highly condensed CBC gradually accumulated along the core downward profile. In the sediment core profile of the seamount middle-lower part (3497 m), benzenetricarboxylic acid and benzenetetracarboxylic acid content decreased while the BC condensation degree rose, i.e., less condensed CBC was preferentially consumed. Afterward, CBC molecules reached a relatively stable state at the seamount foot. This study reveals that CBC possesses the capacity for long-term carbon sequestration in deep-sea sediments, and its content is not negligible.


Asunto(s)
Sedimentos Geológicos , Hollín , Sedimentos Geológicos/química , Hollín/análisis , Ácidos Carboxílicos , Carbono , China , Monitoreo del Ambiente/métodos
2.
Environ Sci Technol ; 57(49): 20750-20760, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37909879

RESUMEN

The environmental implications of polycyclic aromatic hydrocarbons (PAHs) caused by the vigorous development of offshore oil exploitation and shipping on the marine ecosystem are unclear. In this study, the PAH concentrations were systematically characterized in multiple environmental media (i.e., atmosphere, rainwater, seawater, and deep-sea sediments) in the western South China Sea (WSCS) for the first time to determine whether PAH pollution increased. The average ∑15PAHs (total concentration of 15 US EPA priority controlled PAHs excluding naphthalene) in the water of WSCS has increased and is higher than the majority of the oceans worldwide due to the synergistic influence of offshore oil extraction, shipping, and river input. The systematic model comparison confirms that the Ksoot-air model can more accurately reflect the gas-particle partitioning of PAHs in the atmosphere of the WSCS. We also found that the vertical migration of the elevating PAHs is accelerated by particulate matter, driving the migration of atmospheric PAHs to the ocean through dry and wet deposition, with 16% being contributed by the particle phase. The particulate matter sinking alters the PAH distribution in the water column and generates variation in source apportionment, while the contribution of PAHs loaded on them (>20%) to the total PAH reserves cannot be ignored as before. Hence, the ecological threat of PAHs increases by the oil drilling and shipping industry, and the driving force of particulate matter deserves continuous attention.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Océanos y Mares , Material Particulado/análisis , China , Agua , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos
3.
Small ; 18(45): e2203629, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36084240

RESUMEN

Dendrimers are polymers with well-defined 3D branched structures that are vastly utilized in various neurotheranostics and biomedical applications, particularly as nanocarrier vectors. Imaging agents can be loaded into dendrimers to improve the accuracy of diagnostic imaging processes. Likewise, combining pharmaceutical agents and anticancer drugs with dendrimers can enhance their solubility, biocompatibility, and efficiency. Practically, by modifying ligands on the surface of dendrimers, effective therapeutic and diagnostic platforms can be constructed and implemented for targeted delivery. Dendrimer-based nanocarriers also show great potential in gene delivery. Since enzymes can degrade genetic materials during their blood circulation, dendrimers exhibit promising packaging and delivery alternatives, particularly for central nervous system (CNS) treatments. The DNA and RNA encapsulated in dendrimers represented by polyamidoamine that are used for targeted brain delivery, via chemical-structural adjustments and appropriate generation, significantly improve the correlation between transfection efficiency and cytotoxicity. This article reports a comprehensive review of dendrimers' structures, synthesis processes, and biological applications. Recent progress in diagnostic imaging processes and therapeutic applications for cancers and other CNS diseases are presented. Potential challenges and future directions in the development of dendrimers, which provide the theoretical basis for their broader applications in healthcare, are also discussed.


Asunto(s)
Dendrímeros , Dendrímeros/química , Portadores de Fármacos/química , Técnicas de Transferencia de Gen , Transfección , Solubilidad , Sistemas de Liberación de Medicamentos
4.
J Invertebr Pathol ; 191: 107763, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35568066

RESUMEN

The intestinal microbiota of the Pacific white shrimp Litopenaeus vannamei during Enterocytozoon hepatopenaei (EHP) infection was investigated by 16S rRNA gene-based analysis. The results showed that bacterial diversity in the intestine of L. vannamei was high, but it decreased with increasing severity of EHP infection. The relative abundances of the phyla Planctomycetes, Actinobacteria and Acidobacteria decreased significantly with a decrease in body size or EHP infection severity (P < 0.05). The most abundant genera were Pseudomonas, Methylobacterium, Bradyrhizobium, Bacteroides, Vibrio, Prevotella and so on. In addition, the relative abundances of some bacteria, such as Pseudomonas, Bradyrhizobium, Bacteroides and Vibrio, increased significantly with a decrease in body size or EHP infection severity (P < 0.05). These findings suggest that changes in the intestinal microbiota occur depending on the severity of EHP infection.


Asunto(s)
Enterocytozoon , Microbioma Gastrointestinal , Penaeidae , Animales , Enterocytozoon/genética , Penaeidae/microbiología , ARN Ribosómico 16S/genética
5.
Ecotoxicol Environ Saf ; 230: 113115, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34953271

RESUMEN

Avermectin is widely used in the prevention and treatment of parasites diseases in aquaculture. However, the residual avermectin has a serious impact on the growth and quality of aquatic animals including Eriocheir sinensis. This study shows that the LC50 of avermectin to E. sinensis for 24, 48, 72 and 96 h was 21.88, 13.40, 9.11 and 7.10 mg/L, respectively. After avermectin stress, the activities of superoxide dismutase (SOD), catalase (CAT) and phenol oxidase (PO) in the hepatopancreas of E. sinensis increased and reached the peak on the 6th day. The content of malondialdehyde (MDA) accumulated with the increase of exposure time and concentration of avermectin. After 15 days of avermectin exposure, hepatopancreas was damaged seriously. These results indicated that avermectin had toxicity to E. sinensis. In order to solve the pollution problem caused by residual avermectin, a degrading bacterium AVM-2 was separated from the sediment of E. sinensis breeding pond. The strain was confirmed to be Ochrobactrum sp by morphology observation, physiological and biochemical identification and 16 S rDNA sequences analysis. When the pH value was 7, the temperature was 30 â„ƒ, the concentration of substrate was low, the quantity of inoculation was high, Ochrobactrum sp. AVM-2 had better degradation effect on avermectin. When the addition of Ochrobactrum sp. AVM-2 was 2.34 × 108 CFU/L, the residual avermectin in muscle and hepatopancreatine significantly decreased, and the degradation rate was about 66%. In summary, Ochrobactrum sp. AVM-2 could be used to solve the residual problem of avermectin and ensure the food safety of E. sinensis.

6.
Bioconjug Chem ; 31(3): 663-672, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31884782

RESUMEN

Light-activated phototherapy, including photothermal and photodynamic therapy, has become a new way for spatiotemporal control and noninvasive treatment of cancer. In this study, two new organic porphyrin molecules (NI-Por and NI-ZnPor) with donor (D)-acceptor (A) structure were designed and synthesized. The donor-acceptor pairs facilitated the intermolecular electron transfer, resulting in the enhancement of near-infrared (NIR) absorbance and nonradiative heat generation. After self-assembling, the nanoparticles were formed with the size around 60 nm. Relative to that of organic molecules, the absorption of NI-Por NPs and NI-ZnPor NPs broadened and red-shifted to the near-infrared region. Moreover, the porphyrin-containing nanoparticles can generate heat and reactive oxygen species (ROS) simultaneously induced by a single laser (635 nm). The intracellular reactive oxygen species production of NI-Por NPs and NI-ZnPor NPs was confirmed using DCFH-DA as an indicator. Furthermore, the localization of NI-Por NP and NI-ZnPor NP in HeLa cells was verified by fluorescence confocal laser microscopy. The photocytoxicity of two nanoparticles against HeLa cells was evaluated through the CCK-8 method. The IC50 of NI-Por NPs and NI-ZnPor NPs upon 635 nm laser irradiation was calculated to be 6.92 µg/mL and 5.86 µg/mL, respectively. Furthermore, the PDT/PTT synergistic effect of NPs under a 635 nm laser was verified through different treatment groups in vitro. All these results demonstrated that the as-prepared porphyrin-based nanoparticles are promising nanoagents for PDT/PTT in clinic.


Asunto(s)
Nanoestructuras/química , Naftalimidas/química , Fotoquimioterapia/métodos , Terapia Fototérmica/métodos , Porfirinas/química , Porfirinas/farmacología , Células HeLa , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Espacio Intracelular/efectos de la radiación , Porfirinas/uso terapéutico , Oxígeno Singlete/metabolismo
7.
Photochem Photobiol Sci ; 19(7): 905-912, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32369050

RESUMEN

Photodynamic therapy (PDT) has been extensively explored for malignant tissue treatment. In this work, we successfully synthesized and characterized a series of porphyrin compounds by connecting porphyrin units with alkyl chains, which were then coordinated with palladium to yield related metal complexes, named Pd-Monopor, Pd-Dipor, and Pd-Tripor, respectively. The generation of reactive oxygen species (ROS) of six porphyrin compounds was investigated by the dichlorofluorescein (DCFH) method. As expected, the palladium porphyrin complexes showed the higher efficiency of ROS generation relative to free base porphyrins, probably due to the heavy atom effect. Remarkably, the efficiency of ROS generation increased with the number of porphyrin units in the photosensitizers. The order of ROS generation efficiency of the synthesized porphyrins was Pd-Tripor > Tripor > Dipor > Pd-Monopor > Pd-Dipor > Monopor. MTT assay suggested the good biocompatibility of the synthesized photosensitizers in the dark. Upon light irradiation, the palladium porphyrin complex exhibited higher therapeutic activity than free base porphyrin. The half-maximal inhibitory concentration (IC50) of Tripor and Pd-Tripor under light irradiation was calculated to be 18.2 and 9.6 µM, respectively. The cellular uptake and subcellular localization experiments indicated that Tripor was mainly localized in the lysosomes of cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Paladio/farmacología , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Estructura Molecular , Paladio/química , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Porfirinas/química , Especies Reactivas de Oxígeno/metabolismo , Oxígeno Singlete/análisis
8.
Mikrochim Acta ; 186(5): 315, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31041599

RESUMEN

Manganese-doped carbon quantum dots (MnCQDs) were prepared through one-step hydrothermal method using citric acid and manganese tetraphenyl porphyrin as carbon sources in aqueous media. The structure of MnCQDs was confirmed by TEM, XRD, and XPS. The MnCQDs display a typical excitation-dependent emission behavior and exhibit bright green luminescence (with a peak at 482 nm) under UV irradiation (365 nm) and a fluorescence quantum yield of 13%. The MnCQDs can be used as a fluorescent probe for ferric ion in aqueous solution with a 220 nM detection limit. The MTT assay demonstrated the low cytotoxicity of MnCQDs towards HeLa cells. Due to the excitation-dependent emission properties, MnCQDs can be used as a multi-color (blue, green, and red) bioimaging agent in cancer cells and in living zebrafish. The application of MnCQDs as selective biosensing probe for Fe3+ was also realized in cells and zebrafish mode. Because of the existence of paramagnetic ions, MnCQDs demonstrate an enhanced magnetic resonance (MR) signal. Thus, the MnCQDs can serve as a positive contrast agent for MR imaging. Graphical abstract Schematic presentation of the preparation of luminescent manganese-doped carbon quantum dots (MnCQDs). MnCQDs showed good magnetic resonance effect and can be used as a fluorescence probe for the detection of Fe3+ in HeLa cells and zebrafish.


Asunto(s)
Técnicas Biosensibles/métodos , Carbono/química , Imagen por Resonancia Magnética/métodos , Manganeso/química , Puntos Cuánticos/química , Fluorometría , Células HeLa , Humanos , Hierro/metabolismo
9.
ACS Nano ; 18(3): 1820-1845, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38193927

RESUMEN

The blood-brain barrier (BBB) is a specialized semipermeable structure that highly regulates exchanges between the central nervous system parenchyma and blood vessels. Thus, the BBB also prevents the passage of various forms of therapeutic agents, nanocarriers, and their cargos. Recently, many multidisciplinary studies focus on developing cargo-loaded nanoparticles (NPs) to overcome these challenges, which are emerging as safe and effective vehicles in neurotheranostics. In this Review, first we introduce the anatomical structure and physiological functions of the BBB. Second, we present the endogenous and exogenous transport mechanisms by which NPs cross the BBB. We report various forms of nanomaterials, carriers, and their cargos, with their detailed BBB uptake and permeability characteristics. Third, we describe the effect of regulating the size, shape, charge, and surface ligands of NPs that affect their BBB permeability, which can be exploited to enhance and promote neurotheranostics. We classify typical functionalized nanomaterials developed for BBB crossing. Fourth, we provide a comprehensive review of the recent progress in developing functional polymeric nanomaterials for applications in multimodal bioimaging, therapeutics, and drug delivery. Finally, we conclude by discussing existing challenges, directions, and future perspectives in employing functionalized nanomaterials for BBB crossing.


Asunto(s)
Nanopartículas , Nanoestructuras , Barrera Hematoencefálica , Nanoestructuras/química , Sistemas de Liberación de Medicamentos/métodos , Transporte Biológico , Nanopartículas/química , Encéfalo
10.
Sci Total Environ ; 917: 170359, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38281641

RESUMEN

Organophosphate esters (OPEs) have been a class of emerging environmental contaminants. However, studies on their environmental behavior, specifically their adsorption-desorption behavior between sediment and seawater in estuarine and coastal areas, remain limited. To address this gap, our study focused on investigating the levels and behavior of 11 OPEs in sediment samples collected from the Beibu Gulf, South China Sea, encompassing estuaries and coastal regions. The total concentrations of 11 OPEs (Σ11OPEs) in the sediments exhibit a significant decrease in summer, both in seagoing rivers (4.67 ± 2.74 ng/g dw) and the coastal zone (5.11 ± 3.71 ng/g dw), compared to winter levels in seagoing rivers (8.26 ± 4.70 ng/g dw) and the coastal zone (7.71 ± 3.83 ng/g dw). Chlorinated OPEs dominated the sediments, constituting 63 %-76 % of the total. Particularly, port and mariculture areas showed the highest levels of OPEs. Through load estimation analysis, it was revealed that the sedimentary OPEs in Qinzhou Bay (221 ± 128 kg) had the highest load, with input from the Qin River identified as a significant source. Chlorinated OPEs showed a trend of desorption from sediments to the water column with increasing salinity, emphasizing the crucial role of land-based OPEs input through suspended particulate matter in rivers as a pathway to the ocean. The impact of strong flow in estuarine environments was highlighted, as it can scour sediments, generate suspended sediments, and release OPEs into the water bodies. Additionally, the results of the ecological risk assessment indicated that most of the OPEs posed low-risk levels. However, attention is warranted for the contamination levels of some chlorinated OPEs, emphasizing the need for ongoing monitoring and assessment.

11.
Sci Rep ; 13(1): 3225, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36828837

RESUMEN

Our research group has recently found that radiation-induced airborne stress signals can be used for communication among Caenorhabditis elegans (C. elegans). This paper addresses the question of whether heat stress can also induce the emission of airborne stress signals to alert neighboring C. elegans and elicit their subsequent stress response. Here, we report that heat-stressed C. elegans produces volatile stress signals that trigger an increase in radiation resistance in neighboring unheated C. elegans. When several loss-of-function mutations affecting thermosensory neuron (AFD), heat shock factor-1, HSP-4, and small heat-shock proteins were used to test heat-stressed C. elegans, we found that the production of volatile stress signals was blocked, demonstrating that the heat shock response and ER pathway are involved in controlling the production of volatile stress signals. Our data further indicated that mutations affecting the DNA damage response (DDR) also inhibited the increase in radiation resistance in neighboring unheated C. elegans that might have received volatile stress signals, indicating that the DDR might contribute to radioadaptive responses induction by volatile stress signals. In addition, the regulatory pattern of signal production and action was preliminarily clarified. Together, the results of this study demonstrated that heat-stressed nematodes communicate with unheated nematodes via volatile stress signals.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Respuesta al Choque Térmico/genética , Mutación
12.
Chemosphere ; 313: 137652, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36581113

RESUMEN

Despite organophosphate esters (OPEs) are widely prevalent in the environment, however, limited information is available regarding their occurrence, trophodynamics, and exposure risks in coral reef ecosystems. In this study, 11 OPEs were investigated in a tropical marine food web (7 fish species and 9 benthos species) from the Xisha (XS) Islands, South China Sea (SCS). The ∑11OPEs were 1.52 ± 0.33 ng/L, 2227 ± 2062 ng/g lipid weight (lw), 1024 ± 606 ng/g lw, and 1800 ± 1344 ng/g lw in seawater, fish, molluscs, and corals, respectively. Tris (2-chloroisopropyl) phosphate (TCIPPs) were the dominant OPEs in seawater, fish, and molluscs, while tris (2-butoxyethyl) phosphate (TBOEP) predominated in coral tissues. Abiotic and biotic factors jointly affect the OPEs enrichment in marine organisms. Trophic magnification factors (TMFs) (range: 1.31-39.2) indicated the biomagnification potency of OPEs. A dietary exposure risk assessment indicated that OPEs at current levels in coral reef fish posed a low risk to human health but were not negligible. Overall, this study contributes to a further understanding of the environmental behaviors of OPEs in coral reef ecosystems.


Asunto(s)
Antozoos , Retardadores de Llama , Animales , Humanos , Arrecifes de Coral , Cadena Alimentaria , Ecosistema , Monitoreo del Ambiente , Organofosfatos , Fosfatos , China , Peces , Ésteres
13.
Open Med (Wars) ; 17(1): 1064, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35799596

RESUMEN

[This retracts the article DOI: 10.1515/med-2021-0008.].

14.
Chem Sci ; 13(47): 14179-14190, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36540815

RESUMEN

Recent studies have shown that biodegradable nanoparticles can be efficiently prepared with polymerization of N-carboxyanhydrides-induced self-assembly (NCA-PISA). However, thus far, the effect of chiral monomer ratio on such NCA-PISA formulations and the resulting nanoparticles has not yet been fully explored. Herein, we show, for the first time, that the morphology, secondary structure, and biodegradation rate of PISA nanoparticles can be controlled by altering the chiral ratio of the core-forming monomers. This chirality-controlled PISA (CC-PISA) method allowed the preparation of nanoparticles that are more adjustable and applicable for future biomedical applications. Additionally, the complex secondary peptide structure (ratio of α-helix to ß-sheet) and π-π stacking affect the polymer self-assembly process. More specifically, a PEG45 macro-initiator was chain-extended with l- and d-phenylalanine (l- and d-Phe-NCA) in various molar ratios in dry THF at 15 wt%. This ring-opening polymerization (ROP) allowed the preparation of homo- and hetero-chiral Phe-peptide block copolymers that self-assembled in situ into nanoparticles. For homo-chiral formulations, polymers self-assembled into vesicles once a sufficiently high phenylalanine degree of polymerization (DP) was obtained. Hetero-chiral formulations formed larger nanoparticles with various morphologies and, much to our surprise, using an equal enantiomer ratio inhibited PISA and led to a polymer solution instead. Finally, it was shown that the enzymatic biodegradation rate of such PISA particles is greatly affected by the polymer chirality. This PISA approach could be of great value to fabricate nanoparticles that exploit chirality in disease treatment.

15.
Materials (Basel) ; 15(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35057220

RESUMEN

Cancer is one of the major diseases threatening human health. Traditional cancer treatments have notable side-effects as they can damage the immune system. Recently, phototherapy, as a potential strategy for clinical cancer therapy, has received wide attention due to its minimal invasiveness and high efficiency. Herein, a small organic molecule (PTA) with a D-A-D structure was prepared via a Sonogashira coupling reaction between the electron-withdrawing dibromo-perylenediimide and electron-donating 4-ethynyl-N,N-diphenylaniline. The amphiphilic organic molecule was then transformed into nanoparticles (PTA-NPs) through the self-assembling method. Upon laser irradiation at 635 nm, PTA-NPs displayed a high photothermal conversion efficiency (PCE = 43%) together with efficient reactive oxygen species (ROS) generation. The fluorescence images also indicated the production of ROS in cancer cells with PTA-NPs. In addition, the biocompatibility and photocytotoxicity of PTA-NPs were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and live/dead cell co-staining test. Therefore, the as-prepared organic nanomaterials were demonstrated as promising nanomaterials for cancer phototherapy in the clinic.

16.
Chemosphere ; 308(Pt 1): 136295, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36064010

RESUMEN

Multiple environmental pressures caused by global warming and human activities have aroused widespread concern about PAHs pollution in tropical marine coral reef regions (CRRs). However, the trophodynamics of PAHs in the food webs of the CRRs and the related influence factors have not been reported. This study investigated the occurrence, trophic amplification, and transmission of PAHs in various organisms selecting between at least representative species for each level in CRRs of the South China Sea (SCS); revealed their driving mechanisms; and explored the trophodynamics of PAHs in the food web of the coral reef ecosystem. Results showed that more PAHs can be accumulated in the mantle tissue of Tridacnidae, and the proportion of mantle tissue of Tridacnidae increases with the increase of latitude (y = 0.01x + 0.17, R2 = 0.49, p < 0.05). Latitude drives the differential occurrence level and bioaccumulation of PAHs in tropical marine organisms, and also affects the trophodynamics of PAHs in aquatic ecosystem food webs. PAHs undergo trophic amplification in the food webs of tropical marine ecosystems represented by coral reefs, thus further aggravating the negative environmental impact on coral reef ecosystems. The cancer risk caused by accidental ingestion of PAHs by humans through consumption of seafood in CRRs is very low, but we should be alert to the biomagnification effect of PAHs.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Bioacumulación , China , Arrecifes de Coral , Ecosistema , Monitoreo del Ambiente , Peces , Cadena Alimentaria , Humanos , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
17.
Sci Total Environ ; 847: 157442, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35901874

RESUMEN

The behavior and fate of PAHs are affected by multiple meteorological factors, but the main factors driving PAHs in tropical mariculture areas are still not clearly understood. This study continuously monitored PAHs in a few tropical land-based mariculture ponds, discussed their dynamic change trend, migration among the multiple media, and the relevant affected factors. Results indicated that PAHs were widely distributed in these environmental media, and the PAHs' concentration showed an obvious attenuation trend in the mariculture cycle. Wet deposition brought overwhelming majority atmospheric PAHs (92 % ± 5.7 %) to the aqueous system, and >72 % of these PAHs came from oil combustion-related sources and biomass combustion. Compared with the natural sea areas in the same region, mariculture ponds sediment could be changed from a sink at the early stage to a secondary release source of PAHs at the late stage of the rainy season, which intensifies the bioaccumulation of PAHs and the risk of edible carcinogenesis of aquatic products. Our research revealed that rainfall drove the occurrence and environmental behavior of PAHs in the tropical mariculture areas, while land-based mariculture ponds ecosystem affected the regional environmental fate of PAHs and weakened their transmission to the marine environment from land.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , China , Ecosistema , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Hidrocarburos Policíclicos Aromáticos/análisis , Estanques , Contaminantes Químicos del Agua/análisis
18.
Open Med (Wars) ; 16(1): 33-40, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33364432

RESUMEN

In this research, we attempted to explain the effect and the related molecular mechanisms of ABIN1 in lipopolysaccharide (LPS)-induced septic mice or RAW264.7 macrophages. LPS was adopted to treat RAW264.7 macrophages for 4 h, and the levels of inflammatory factors were assessed by ELISA. Besides, ABIN1 expression was measured by quantitative reverse transcription polymerase chain reaction. Apparently, LPS enhanced immunoreaction, suggested by increased expression of IL-1ß, tumor necrosis factor (TNF)-α, and IL-6. ABIN1 levels were obviously reduced compared to the control. Furthermore, we evaluated the roles of ABIN1-plasmid in immunoreaction and nuclear factor-κB (NF-κB) pathway. We found that ABIN1-plasmid significantly reduced the expression of IL-1ß, TNF-α, and IL-6 in LPS-treated cells and inhibited NF-κB pathway activation. Meanwhile, a septic mouse mode was conducted to validate the role of ABIN1 in inflammatory response and organ damage in vivo. These data suggested that ABIN1-plasmid significantly inhibited the secretion of inflammatory cytokines and Cr, BUN, AST, and ALT levels in the serum of LPS-stimulated mice compared to LPS + control-plasmid group, reflecting the relieved inflammation and organ injury. In summary, the present findings indicated that ABIN1 alleviated sepsis by repressing inflammatory response through NF-κB signaling pathway, emphasizing the potential value of ABIN1 as therapeutic strategy for sepsis.

19.
Colloids Surf B Biointerfaces ; 205: 111841, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33992824

RESUMEN

Phototherapy has gained great attention in the past decade owing to the advantages of high selectivity and low toxicity. However, it's still a challenge to develop a single photosensitizer that can achieve both photothermal and photodynamic effects. Herein, we design and synthesize a new organic compound (PIT) with a typical D-A-D structure through the covalent conjugation of perylene diimides (PDI) and triphenylamine (TPA). The amphiphilic PIT could be transformed to the nanoparticles (PIT NPs) through nanoprecipitation method. PIT NPs exhibit good water dispersibility with particle size around 70 nm. Because of the efficient NIR absorption, PIT NPs display high photothermal conversion efficiency (PCE) (η = 46.1 %) and strong photoacoustic signal under irradiation of 635 nm laser. Moreover, under the same laser irradiation, significant reactive oxygen species can be induced by PIT NPs both in aqueous solution and cancer cells. The MTT assay demonstrate the good biocompatibility and outstanding photocytotoxicity of PIT NPs. Thus, the as-prepared PIT NPs could be used as excellent candidates for photoacoustic imaging and photodynamic/photothermal therapy.


Asunto(s)
Nanopartículas , Neoplasias , Perileno , Técnicas Fotoacústicas , Células HeLa , Humanos , Fototerapia
20.
Colloids Surf B Biointerfaces ; 196: 111351, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32916437

RESUMEN

Near-infrared (NIR) light-activated phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), has gained considerable attention due to the advantages of high efficiency and minimally invasiveness. However, the development of a single component therapeutic agent with clear structure and molecular weight that achieve photodynamic/photothermal synergistic therapy is still challenging. Herein, we design and synthesize a new smart photosensitizer (PRX) by conjugation of perylene diimide (PDI) and methylene violet (RAX). The typical donor-acceptor (D-A) structure of RAX facilitates the red-shift of absorption to the near-infrared (NIR) region. The amphiphilic PRX could self-assemble into monodispersed nanoparticles (PRX NPs) with enhanced and broadened absorption. Under a single 808 nm laser irradiation, PRX NPs could generate efficient reactive oxygen species (ROS) and heat simultaneously with the photothermal conversion efficiency as high as 59%. PRX NPs displays strong interaction with DNA and can damage plasmid DNA upon light irradiation. The biocompatibility and high phototoxicity of PRX NPs against A549 cells are further confirmed through MTT assay. Therefore, the as-prepared PRX NPs could be served as a promising antitumor nanoagent through photothermal/photodynamic combination manner.


Asunto(s)
Nanopartículas , Neoplasias , Perileno , Fotoquimioterapia , ADN , Neoplasias/tratamiento farmacológico , Perileno/uso terapéutico , Fenotiazinas , Fototerapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA