Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
J Dairy Sci ; 107(5): 2573-2585, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37977446

RESUMEN

Camel milk (CM), known for its immune-regulatory, anti-inflammatory, antiapoptotic, and antidiabetic properties, is a natural healthy food. It is easily digestible due to the high levels of ß-casein and diverse secreted antibodies, exhibiting superior antibacterial and antiviral activities compared with bovine milk. ß-casein is less allergic and more digestible because it is more susceptible to digestive hydrolysis in the gut; therefore, higher levels of ß-casein make CM advantageous for human health. Furthermore, antibodies help the digestive system by destroying the antigens, which are then overwhelmed and digested by macrophages. The connection between the gut microbiota and human health has gained substantial research attention, as it offers potential benefits and supports disease treatment. The gut microbiota has a vital role in regulating the host's health because it helps in several biological functions, such as protection against pathogens, immune function regulation, energy harvesting from digested foods, and reinforcement of digestive tract biochemical barriers. These functions could be affected by the changes in the gut microbiota profile, and gut microbiota differences are associated with several diseases, such as inflammatory bowel disease, colon cancer, irritable bowel disorder, mental illness, allergy, and obesity. This review focuses on the digestibility of CM components, particularly protein and fat, and their influence on gut microbiota modulation. Notably, the hypoallergenic properties and small fat globules of CM contribute to its enhanced digestibility. Considering the rapid digestion of its proteins under conditions simulating infant gastrointestinal digestion, CM exhibits promise as a potential alternative for infant formula preparation due to the high ß-/αs-casein ratio and protective proteins, in addition to the absence of ß-lactoglobulin.

2.
Crit Rev Food Sci Nutr ; 63(18): 3168-3188, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34613845

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia in elderly people with a high incidence rate and complicated pathogenesis, and causes progressive cognitive deficit and memory impairment. Some natural products and bioactive compounds from natural sources show great potential in the prevention and treatment of AD, such as apple, blueberries, grapes, chili pepper, Monsonia angustifolia, cruciferous vegetables, Herba epimedii, Angelica tenuissima, Embelia ribes, sea cucumber, Cucumaria frondosa, green tea, Puer tea, Amanita caesarea and Inonotus obliquus, via reducing amyloid beta (Aß) deposition, decreasing Tau hyperphosphorylation, regulating cholinergic system, reducing oxidative stress, inhibiting apoptosis and ameliorating inflammation. This review mainly summarizes the effects of some natural products and their bioactive compounds on AD with the potential molecular mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Productos Biológicos , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Estrés Oxidativo
3.
Crit Rev Food Sci Nutr ; 63(19): 3912-3930, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34702110

RESUMEN

Tea, as a beverage, has been reputed for its health benefits and gained worldwide popularity. Tea polyphenols, especially catechins, as the main bioactive compounds in tea, exhibit diverse health benefits and have wide applications in the food industry. The development of tea polyphenol-incorporated products is dependent on the extraction, purification, and identification of tea polyphenols. Recent years, many green and novel extraction, purification, and identification techniques have been developed for the preparation of tea polyphenols. This review, therefore, introduces the classification of tea and summarizes the main conventional and novel techniques for the extraction of polyphenols from various tea products. The advantages and disadvantages of these techniques are also intensively discussed and compared. In addition, the purification and identification techniques are summarized. It is hoped that this updated review can provide a research basis for the green and efficient extraction, purification, and identification of tea polyphenols, which can facilitate their utilization in the production of various functional food products and nutraceuticals.


Asunto(s)
Camellia sinensis , Catequina , Polifenoles/análisis , , Bebidas
4.
Crit Rev Food Sci Nutr ; 63(19): 3716-3733, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34704503

RESUMEN

Obesity has become a global health concern. It increases the risk of several diseases, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease, and certain cancers, which threatens human health and increases social economic burden. As one of the most consumed beverages, tea contains various phytochemicals with potent bioactive properties and health-promoting effects, such as antioxidant, immune-regulation, cardiovascular protection and anticancer. Tea and its components are also considered as potential candidates for anti-obesity. Epidemiological studies indicate that regular consumption of tea is beneficial for reducing body fat. In addition, the experimental studies demonstrate that the potential anti-obesity mechanisms of tea are mainly involved in increasing energy expenditure and lipid catabolism, decreasing nutrient digestion and absorption as well as lipid synthesis, and regulating adipocytes, neuroendocrine system and gut microbiota. Moreover, most of clinical studies illustrate that the intake of green tea could reduce body weight and alleviate the obesity. In this review, we focus on the effect of tea and its components on obesity from epidemiological, experimental, and clinical studies, and discuss their potential mechanisms.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/prevención & control , Obesidad/prevención & control , Obesidad/metabolismo , Té/química , Bebidas , Lípidos
5.
Crit Rev Food Sci Nutr ; 63(29): 9648-9666, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35574653

RESUMEN

Dietary intake of caffeine has significantly increased in recent years, and beneficial and harmful effects of caffeine have been extensively studied. This paper reviews antioxidant and anti-inflammatory activities of caffeine as well as its protective effects on cardiovascular diseases, obesity, diabetes mellitus, cancers, and neurodegenerative and liver diseases. In addition, we summarize the side effects of long-term or excessive caffeine consumption on sleep, migraine, intraocular pressure, pregnant women, children, and adolescents. The health benefits of caffeine depend on the amount of caffeine intake and the physical condition of consumers. Moderate intake of caffeine helps to prevent and modulate several diseases. However, the long-term or over-consumption of caffeine can lead to addiction, insomnia, migraine, and other side effects. In addition, children, adolescents, pregnant women, and people who are sensitive to caffeine should be recommended to restrict/reduce their intake to avoid potential adverse effects.


Asunto(s)
Diabetes Mellitus , Trastornos Migrañosos , Niño , Adolescente , Humanos , Femenino , Embarazo , Cafeína/efectos adversos , Obesidad , Dieta
6.
ORL J Otorhinolaryngol Relat Spec ; 85(3): 128-140, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37019094

RESUMEN

BACKGROUND: Chronic rhinosinusitis (CRS) is a common inflammatory disease in otolaryngology, mainly manifested as nasal congestion, nasal discharge, facial pain/pressure, and smell disorder. CRS with nasal polyps (CRSwNP), an important phenotype of CRS, has a high recurrence rate even after receiving corticosteroids and/or functional endoscopic sinus surgery. In recent years, clinicians have focused on the application of biological agents in CRSwNP. However, it has not reached a consensus on the timing and selection of biologics for the treatment of CRS so far. SUMMARY: We reviewed the previous studies of biologics in CRS and summarized the indications, contraindications, efficacy assessment, prognosis, and adverse effects of biologics. Also, we evaluated the treatment response and adverse reactions of dupilumab, omalizumab, and mepolizumab in the management of CRS and made recommendations. KEY MESSAGES: Dupilumab, omalizumab, and mepolizumab have been approved for the treatment of CRSwNP by the US Food and Drug Administration. Type 2 and eosinophilic inflammation, need for systemic steroids or contraindication to systemic steroids, significantly impaired quality of life, anosmia, and comorbid asthma are required for the use of biologics. Based on current evidence, dupilumab has the prominent advantage in improving quality of life and reducing the risk of comorbid asthma in CRSwNP among the approved monoclonal antibodies. Most patients tolerate biological agents well in general with few major or severe adverse effects. Biologics have provided more options for severe uncontrolled CRSwNP patients or patients who refuse to have surgery. In the future, more novel biologics will be assessed in high-quality clinical trials and applied clinically.


Asunto(s)
Asma , Productos Biológicos , Pólipos Nasales , Rinitis , Sinusitis , Humanos , Asma/tratamiento farmacológico , Productos Biológicos/uso terapéutico , Enfermedad Crónica , Consenso , Pólipos Nasales/complicaciones , Pólipos Nasales/tratamiento farmacológico , Omalizumab/uso terapéutico , Calidad de Vida , Rinitis/complicaciones , Rinitis/tratamiento farmacológico , Sinusitis/complicaciones , Sinusitis/tratamiento farmacológico , Esteroides/uso terapéutico
7.
Angew Chem Int Ed Engl ; 62(2): e202213578, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36353747

RESUMEN

The exploitation of specific guests which can respond to external stimuli is the main approach for the construction of stimuli-responsive supramolecular polymers (SPs) based on host-guest interactions. Most functional guests, however, fail to manifest stimuli-responses. Herein, a hypoxia-responsive dimeric azocalixarene (D-SAC4A) with outstanding hosting properties was used as the macrocyclic building block for the preparation of host stimuli-responsive SPs. Since azocalixarenes can also be compatible with stimuli-responsive guests, an antitumor drug, camptothecin (CPT), was chosen and linked via a disulfide-containing linker to afford a glutathione (GSH)-responsive ditropic guest (D-CPT). A unique dual-responsive SP was obtained by 1 : 1 mixing of D-SAC4A and D-CPT in water, which further assembled into SP nanoparticles (DSPNs). DSPNs displayed outstanding stability against dilution and biological interferants, as well as precise CPT-release under GSH and hypoxia conditions. In vitro and in vivo experiments demonstrated the good biosafety and tumor-suppressive effects of DSPNs.


Asunto(s)
Antineoplásicos , Polímeros , Antineoplásicos/farmacología
8.
Crit Rev Food Sci Nutr ; 62(14): 3817-3832, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33406881

RESUMEN

Hydrogels, polymeric network materials, are capable of swelling and holding the bulk of water in their three-dimensional structures upon swelling. In recent years, hydrogels have witnessed increased attention in food and biomedical applications. In this paper, the available literature related to the design concepts, types, functionalities, and applications of hydrogels with special emphasis on food applications was reviewed. Hydrogels from natural polymers are preferred over synthetic hydrogels. They are predominantly used in diverse food applications for example in encapsulation, drug delivery, packaging, and more recently for the fabrication of structured foods. Natural polymeric hydrogels offer immense benefits due to their extraordinary biocompatible nature. Hydrogels based on natural/edible polymers, for example, those from polysaccharides and proteins, can serve as prospective alternatives to synthetic polymer-based hydrogels. The utilization of hydrogels has so far been limited, despite their prospects to address various issues in the food industries. More research is needed to develop biomimetic hydrogels, which can imitate the biological characteristics in addition to the physicochemical properties of natural materials for different food applications.


Asunto(s)
Hidrogeles , Polímeros , Sistemas de Liberación de Medicamentos , Hidrogeles/química , Polímeros/química , Polisacáridos/química , Estudios Prospectivos
9.
Crit Rev Food Sci Nutr ; 62(31): 8646-8674, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34058920

RESUMEN

The zebrafish is a species of freshwater fish, popular in aquariums and laboratories. Several advantageous features have facilitated zebrafish to be extensively utilized as a valuable vertebrate model in the lab. It has been well-recognized that natural products possess multiple health benefits for humans. With the increasing demand for natural products in the development of functional foods, nutraceuticals, and natural cosmetics, the zebrafish has emerged as an unprecedented tool for rapidly and economically screening and identifying safe and effective substances from natural products. This review first summarized the key factors for the management of zebrafish in the laboratory, followed by highlighting the current progress on the establishment and applications of zebrafish models in the bioactivity evaluation of natural products. In addition, the zebrafish models used for assessing the potential toxicity or health risks of natural products were involved as well. Overall, this review indicates that zebrafish are promising animal models for the bioactivity and safety evaluation of natural products, and zebrafish models can accelerate the discovery of novel natural products with potential health functions.


Asunto(s)
Productos Biológicos , Pez Cebra , Animales , Humanos , Productos Biológicos/farmacología , Modelos Animales , Alimentos Funcionales , Suplementos Dietéticos
10.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35852215

RESUMEN

Cancer is a severe public health problem. Resveratrol is a famous natural compound that has various bioactivities, such as antioxidant, anti-inflammatory, antidiabetic and antiaging activities. Especially, resveratrol could prevent and treat various cancers, such as oral, thyroid, breast, lung, liver, pancreatic, gastric, colorectal, bladder, prostate and ovarian cancers. The underlying mechanisms have been widely studied, such as inhibiting cell proliferation, suppressing metastasis, inducing apoptosis, stimulating autophagy, modulating immune system, attenuating inflammation, regulating gut microbiota and enhancing effects of other anticancer drugs. In this review, we summarize effects and mechanisms of resveratrol on different cancers. This paper is helpful to develop resveratrol, crude extract containing resveratrol, or foods containing resveratrol into functional food, dietary supplements or auxiliary agents for prevention and management of cancers.

11.
Crit Rev Food Sci Nutr ; 62(3): 832-859, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33054344

RESUMEN

Rutin is one of the most common dietary polyphenols found in vegetables, fruits, and other plants. It is metabolized by the mammalian gut microbiota and absorbed from the intestines, and becomes bioavailable in the form of conjugated metabolites. Rutin exhibits a plethora of bioactive properties, making it an extremely promising phytochemical. Numerous studies demonstrate that rutin can act as a chemotherapeutic and chemopreventive agent, and its anticancer effects can be mediated through the suppression of cell proliferation, the induction of apoptosis or autophagy, and the hindering of angiogenesis and metastasis. Rutin has been found to modulate multiple molecular targets involved in carcinogenesis, such as cell cycle mediators, cellular kinases, inflammatory cytokines, transcription factors, drug transporters, and reactive oxygen species. This review summarizes the natural sources of rutin, its bioavailability, and in particular its potential use as an anticancer agent, with highlighting its anticancer mechanisms as well as molecular targets. Additionally, this review updates the anticancer potential of its analogs, nanoformulations, and metabolites, and discusses relevant safety issues. Overall, rutin is a promising natural dietary compound with promising anticancer potential and can be widely used in functional foods, dietary supplements, and pharmaceuticals for the prevention and management of cancer.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Antineoplásicos/uso terapéutico , Antioxidantes/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Polifenoles/farmacología , Polifenoles/uso terapéutico , Rutina/uso terapéutico
12.
Molecules ; 27(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35889396

RESUMEN

Cancer has been a serious public health problem. Berberine is a famous natural compound from medicinal herbs and shows many bioactivities, such as antioxidant, anti-inflammatory, antidiabetic, anti-obesity, and antimicrobial activities. In addition, berberine shows anticancer effects on a variety of cancers, such as breast, lung, gastric, liver, colorectal, ovarian, cervical, and prostate cancers. The underlying mechanisms of action include inhibiting cancer cell proliferation, suppressing metastasis, inducing apoptosis, activating autophagy, regulating gut microbiota, and improving the effects of anticancer drugs. This paper summarizes effectiveness and mechanisms of berberine on different cancers and highlights the mechanisms of action. In addition, the nanotechnologies to improve bioavailability of berberine are included. Moreover, the side effects of berberine are also discussed. This paper is helpful for the prevention and treatment of cancers using berberine.


Asunto(s)
Antineoplásicos , Berberina , Microbioma Gastrointestinal , Plantas Medicinales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Berberina/farmacología , Berberina/uso terapéutico , Humanos , Masculino , Obesidad/tratamiento farmacológico
13.
Compr Rev Food Sci Food Saf ; 21(3): 2335-2362, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35365946

RESUMEN

Adzuki bean (Vigna angularis), also called red bean, is a legume of Fabaceae (Leguminosae) family. This crop is native to East Asia and is also commercially available in other parts of the world. It is becoming a research focus owing to its distinct nutritional properties (e.g., abundant in polyphenols). The diverse health benefits and multiple utilization of this pulse are associated with its unique composition. However, there is a paucity of reviews focusing on the nutritional properties and potent applications of adzuki beans. This review summarizes the chemical compositions, physicochemical properties, health benefits, processing, and applications of adzuki beans. Suggestions on how to better utilize the adzuki bean are also provided to facilitate its development as a functional grain. Adzuki bean and its components can be further developed into value-added and nutritionally enhanced products.


Asunto(s)
Fabaceae , Vigna , Fabaceae/química , Polifenoles , Vigna/química
14.
Small ; 17(8): e2006223, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33522123

RESUMEN

Combination therapy based on molecular drugs and therapeutic genes provides an effective strategy for malignant tumor treatment. However, effective gene and drug combinations for cancer treatment are limited by the widespread antagonism between therapeutic genes and molecular drugs. Herein, a calixarene-embedded nanoparticle (CENP) is developed to co-deliver molecular drugs and therapeutic genes without compromising their biological functions, thereby achieving interference-free gene-drug combination cancer therapy. CENP is composed of a cationic polyplex core and an acid-responsive polymer shell, allowing CENP loading and delivering therapeutic genes with improved circulation stability and enhanced tumor accumulation. Moreover, the introduction of carboxylated azocalix[4]arene, which is a hypoxia-responsive calixarene derivatives, in the polyplex core endows CENP with the capability to load molecular drugs through the host-guest complexation as well as inhibit the interference between the drugs and genes by encapsulating the drugs into its cavity. By loading doxorubicin and a plasmid DNA-based CRISPR interference system that targets miR-21, CENP exhibits the significantly enhanced anti-tumor effects in mice. Considering the wide variety of calixarene derivatives, CENP can be adapted to deliver almost any combination of drugs and genes, providing the potential as a universal platform for the development of interference-free gene-drug combination cancer therapy.


Asunto(s)
Calixarenos , Nanopartículas , Neoplasias , Animales , Línea Celular Tumoral , Terapia Combinada , Doxorrubicina , Ratones
15.
Crit Rev Food Sci Nutr ; 61(12): 2061-2077, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32462901

RESUMEN

In recent years, obesity has become a global public health issue. It is closely associated with the occurrence of several chronic diseases, such as diabetes and cardiovascular diseases. Some edible and medicinal plants show anti-obesity activity, such as fruits, vegetables, spices, legumes, edible flowers, mushrooms, and medicinal plants. Numerous studies have indicated that these plants are potential candidates for the prevention and management of obesity. The major anti-obesity mechanisms of plants include suppressing appetite, reducing the absorption of lipids and carbohydrates, inhibiting adipogenesis and lipogenesis, regulating lipid metabolism, increasing energy expenditure, regulating gut microbiota, and improving obesity-related inflammation. In this review, the anti-obesity activity of edible and medicinal plants was summarized based on epidemiological, experimental, and clinical studies, with related mechanisms discussed, which provided the basis for the research and development of slimming products. Further studies should focus on the exploration of safer plants with anti-obesity activity and the identification of specific anti-obesity mechanisms.


Asunto(s)
Fármacos Antiobesidad , Plantas Medicinales , Metabolismo Energético , Humanos , Metabolismo de los Lípidos , Obesidad/tratamiento farmacológico , Obesidad/prevención & control , Plantas Comestibles
16.
J Nanobiotechnology ; 19(1): 451, 2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-34961540

RESUMEN

BACKGROUND: Hypoxia is a major contributor to global kidney diseases. Targeting hypoxia is a promising therapeutic option against both acute kidney injury and chronic kidney disease; however, an effective strategy that can achieve simultaneous targeted kidney hypoxia imaging and therapy has yet to be established. Herein, we fabricated a unique nano-sized hypoxia-sensitive coassembly (Pc/C5A@EVs) via molecular recognition and self-assembly, which is composed of the macrocyclic amphiphile C5A, the commercial dye sulfonated aluminum phthalocyanine (Pc) and mesenchymal stem cell-excreted extracellular vesicles (MSC-EVs). RESULTS: In murine models of unilateral or bilateral ischemia/reperfusion injury, MSC-EVs protected the Pc/C5A complex from immune metabolism, prolonged the circulation time of the complex, and specifically led Pc/C5A to hypoxic kidneys via surface integrin receptor α4ß1 and αLß2, where Pc/C5A released the near-infrared fluorescence of Pc and achieved enhanced hypoxia-sensitive imaging. Meanwhile, the coassembly significantly recovered kidney function by attenuating cell apoptosis, inhibiting the progression of renal fibrosis and reducing tubulointerstitial inflammation. Mechanistically, the Pc/C5A coassembly induced M1-to-M2 macrophage transition by inhibiting the HIF-1α expression in hypoxic renal tubular epithelial cells (TECs) and downstream NF-κB signaling pathway to exert their regenerative effects. CONCLUSION: This synergetic nanoscale coassembly with great translational potential provides a novel strategy for precise kidney hypoxia diagnosis and efficient kidney injury treatment. Furthermore, our strategy of coassembling exogenous macrocyclic receptors with endogenous cell-derived membranous structures may offer a functional platform to address multiple clinical needs.


Asunto(s)
Lesión Renal Aguda/diagnóstico por imagen , Lesión Renal Aguda/tratamiento farmacológico , Hipoxia de la Célula/efectos de los fármacos , Vesículas Extracelulares/química , Compuestos Macrocíclicos/química , Tensoactivos/química , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Calixarenos/química , Calixarenos/metabolismo , Calixarenos/farmacología , Calixarenos/uso terapéutico , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Indoles/química , Indoles/metabolismo , Indoles/farmacología , Indoles/uso terapéutico , Inflamación , Integrinas/metabolismo , Compuestos Macrocíclicos/metabolismo , Compuestos Macrocíclicos/farmacología , Compuestos Macrocíclicos/uso terapéutico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo , Compuestos Organometálicos/farmacología , Compuestos Organometálicos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Tensoactivos/metabolismo , Tensoactivos/farmacología , Tensoactivos/uso terapéutico
17.
Crit Rev Food Sci Nutr ; 60(6): 1025-1037, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30632784

RESUMEN

Cancers are common chronic diseases worldwide and cause severe health burdens. There have been ongoing debates on the role of gut microbiota in the prevention and management of cancers, thus, it is worthwhile to pay high attention to the impacts of gut microbiota on several cancers, such as colon, liver, and breast cancers. In addition, it has been reported that gut microbiota may also affect the efficacy of cancer chemotherapy and immunotherapy. Among all the factors that influence gut microbiota, diet is the most influential and modifiable. The prebiotics, dietary fibers, short-chain fatty acids, and other bioactive compounds are all important dietary components to assist the growth of beneficial microbiota in the gut, which can protect against cancers and promote human health. Their beneficial effects can be due to the fermentation of dietary fibers, the metabolism of phytochemicals, the synthesis of estrogens, and interactions with chemotherapies and immunotherapies. In order to provide updated information of the relationships among dietary components, gut microbiota, and cancer, in this review, we summarize the reciprocal interactions between dietary components and gut microbiota, and highlight the impacts of dietary components on several common cancers by targeting gut microbiota, with the potential mechanisms of actions also intensively discussed. As a result, this review can be very helpful for healthy people as well as cancer patients to prevent or manage cancers via dietary factor-mediated regulation of gut microbiota.


Asunto(s)
Dieta , Microbioma Gastrointestinal , Neoplasias/prevención & control , Neoplasias/terapia , Fibras de la Dieta , Ácidos Grasos Volátiles , Humanos , Fitoquímicos , Prebióticos
18.
Crit Rev Food Sci Nutr ; 60(10): 1693-1705, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30869995

RESUMEN

Tea is a traditional and popular beverage worldwide, and the consumption of tea has been demonstrated to possess many health benefits, such as cardiovascular protection, anti-obesity, anti-diabetes, and anticancer. Epidemiological studies have shown that the consumption of tea is inversely associated with the risk of several cancers. In addition, experimental studies have revealed that the anticancer actions of tea are mainly attributed to tea polyphenols, such as epigallocatechin-3-gallate and theaflavins. Both in vitro and in vivo studies have demonstrated that the possible anticancer mechanisms are the inhibition on proliferation, anti-angiogenesis, induction of apoptosis, suppression on metastasis, inhibition on cancer stem cells, and modulation on gut microbiota. Its synergetic anticancer effects with drugs or other compounds could promote anticancer therapies. Furthermore, clinical trials have elucidated that intervention of tea phytochemicals is effective in the prevention of several cancers. This paper is an updated review for the prevention and management of cancers by tea based on the findings from epidemiological, experimental and clinical studies, and special attention is paid on the mechanisms of action.


Asunto(s)
Anticarcinógenos/farmacología , Neoplasias/prevención & control , Polifenoles/farmacología , Té/química , Antioxidantes , Apoptosis , Catequina , Humanos
19.
Int J Mol Sci ; 21(2)2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963129

RESUMEN

Gastric cancer is the fifth most common cancer, and the third most prevalent cause of cancer-related deaths in the world. Voluminous evidence has demonstrated that phytochemicals play a critical role in the prevention and management of gastric cancer. Most epidemiological investigations indicate that the increased intake of phytochemicals could reduce the risk of gastric cancer. Experimental studies have elucidated the mechanisms of action, including inhibiting cancer cell proliferation, inducing apoptosis and autophagy, and suppressing angiogenesis as well as cancer cell metastasis. These mechanisms have also been related to the inhibition of Helicobacter pylori and the modulation of gut microbiota. In addition, the intake of phytochemicals could enhance the efficacy of anticancer chemotherapeutics. Moreover, clinical studies have illustrated that phytochemicals have the potential for the prevention and the management of gastric cancer in humans. To provide an updated understanding of relationships between phytochemicals and gastric cancer, this review summarizes the effects of phytochemicals on gastric cancer, highlighting the underlying mechanisms. This review could be helpful for guiding the public in preventing gastric cancer through phytochemicals, as well as in developing functional food and drugs for the prevention and treatment of gastric cancer.


Asunto(s)
Fitoquímicos/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Helicobacter pylori , Humanos , Neoplasias Gástricas/microbiología
20.
Molecules ; 25(24)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327371

RESUMEN

We herein constructed supramolecular assemblies from guanidinocalixarenes and sulfonatocalixarenes by exploiting multiple salt bridge interactions. They encapsulate six different kinds of fluorescent dyes (both cationic and anionic), leading to a fluorescence enhancement that could not be achieved by either single calixarene. As such, this study advances the research on high-performance fluorophores.


Asunto(s)
Arilsulfonatos/química , Calixarenos/química , Colorantes Fluorescentes/química , Guanidinas/química , Espectrometría de Fluorescencia/métodos , Naftalenosulfonatos de Anilina/química , Benzotiazoles/química , Composición de Medicamentos/métodos , Humanos , Metilaminas/química , Simulación de Dinámica Molecular , Compuestos de Piridinio/química , Quinolinas/química , Soluciones , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA