Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 983
Filtrar
1.
Cell ; 183(3): 730-738.e13, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-32979942

RESUMEN

SARS-CoV-2 is an enveloped virus responsible for the COVID-19 pandemic. Despite recent advances in the structural elucidation of SARS-CoV-2 proteins, the detailed architecture of the intact virus remains to be unveiled. Here we report the molecular assembly of the authentic SARS-CoV-2 virus using cryoelectron tomography (cryo-ET) and subtomogram averaging (STA). Native structures of the S proteins in pre- and postfusion conformations were determined to average resolutions of 8.7-11 Å. Compositions of the N-linked glycans from the native spikes were analyzed by mass spectrometry, which revealed overall processing states of the native glycans highly similar to that of the recombinant glycoprotein glycans. The native conformation of the ribonucleoproteins (RNPs) and their higher-order assemblies were revealed. Overall, these characterizations revealed the architecture of the SARS-CoV-2 virus in exceptional detail and shed light on how the virus packs its ∼30-kb-long single-segmented RNA in the ∼80-nm-diameter lumen.


Asunto(s)
Betacoronavirus/fisiología , Betacoronavirus/ultraestructura , Ensamble de Virus , Animales , Chlorocebus aethiops , Microscopía por Crioelectrón , Humanos , Espectrometría de Masas , Modelos Moleculares , Conformación Proteica , SARS-CoV-2 , Células Vero , Proteínas Virales/química , Proteínas Virales/ultraestructura , Cultivo de Virus
2.
Hepatology ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546278

RESUMEN

BACKGROUND AND AIMS: The immunomodulatory characteristics of mesenchymal stem cells (MSCs) make them a promising therapeutic approach for liver fibrosis (LF). Here, we postulated that MSCs could potentially suppress the pro-fibrotic activity of intrahepatic B cells, thereby inhibiting LF progression. APPROACH AND RESULTS: Administration of MSCs significantly ameliorated LF as indicated by reduced myofibroblast activation, collagen deposition, and inflammation. The treatment efficacy of MSCs can be attributed to decreased infiltration, activation, and pro-inflammatory cytokine production of intrahepatic B cells. Single-cell RNA sequencing revealed a distinct intrahepatic B cell atlas, and a subtype of naive B cells (B-II) was identified, which were markedly abundant in fibrotic liver, displaying mature features with elevated expression of several proliferative and inflammatory genes. Transcriptional profiling of total B cells revealed that intrahepatic B cells displayed activation, proliferation, and pro-inflammatory gene profile during LF. Fibrosis was attenuated in mice ablated with B cells (µMT) or in vivo treatment with anti-CD20. Moreover, fibrosis was recapitulated in µMT after adoptive transfer of B cells, which in turn could be rescued by MSC injection, validating the pathogenic function of B cells and the efficacy of MSCs on B cell-promoted LF progression. Mechanistically, MSCs could inhibit the proliferation and cytokine production of intrahepatic B cells through exosomes, regulating the Mitogen-activated protein kinase and Nuclear factor kappa B signaling pathways. CONCLUSIONS: Intrahepatic B cells serve as a target of MSCs, play an important role in the process of MSC-induced amelioration of LF, and may provide new clues for revealing the novel mechanisms of MSC action.

3.
Cell Mol Life Sci ; 81(1): 124, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466420

RESUMEN

Acute lung injury (ALI) is an inflammatory disease associated with alveolar injury, subsequent macrophage activation, inflammatory cell infiltration, and cytokine production. Mesenchymal stem cells (MSCs) are beneficial for application in the treatment of inflammatory diseases due to their immunomodulatory effects. However, the mechanisms of regulatory effects by MSCs on macrophages in ALI need more in-depth study. Lung tissues were collected from mice for mouse lung organoid construction. Alveolar macrophages (AMs) derived from bronchoalveolar lavage and interstitial macrophages (IMs) derived from lung tissue were co-cultured, with novel matrigel-spreading lung organoids to construct an in vitro model of lung organoids-immune cells. Mouse compact bone-derived MSCs were co-cultured with organoids-macrophages to confirm their therapeutic effect on acute lung injury. Changes in transcriptome expression profile were analyzed by RNA sequencing. Well-established lung organoids expressed various lung cell type-specific markers. Lung organoids grown on spreading matrigel had the property of functional cells growing outside the lumen. Lipopolysaccharide (LPS)-induced injury promoted macrophage chemotaxis toward lung organoids and enhanced the expression of inflammation-associated genes in inflammation-injured lung organoids-macrophages compared with controls. Treatment with MSCs inhibited the injury progress and reduced the levels of inflammatory components. Furthermore, through the nuclear factor-κB pathway, MSC treatment inhibited inflammatory and phenotypic transformation of AMs and modulated the antigen-presenting function of IMs, thereby affecting the inflammatory phenotype of lung organoids. Lung organoids grown by spreading matrigel facilitate the reception of external stimuli and the construction of in vitro models containing immune cells, which is a potential novel model for disease research. MSCs exert protective effects against lung injury by regulating different functions of AMs and IMs in the lung, indicating a potential mechanism for therapeutic intervention.


Asunto(s)
Lesión Pulmonar Aguda , Células Madre Mesenquimatosas , Neumonía , Ratones , Animales , Macrófagos Alveolares/metabolismo , Lipopolisacáridos/farmacología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/terapia , Pulmón/metabolismo , Macrófagos/metabolismo , Modelos Animales de Enfermedad , Inflamación/terapia , Inflamación/metabolismo , Organoides/metabolismo
4.
Clin Infect Dis ; 78(2): 248-258, 2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-37738153

RESUMEN

BACKGROUND: Carbapenem-resistant Acinetobacter baumannii (CRAb) is 1 of the most problematic antimicrobial-resistant bacteria. We sought to elucidate the international epidemiology and clinical impact of CRAb. METHODS: In a prospective observational cohort study, 842 hospitalized patients with a clinical CRAb culture were enrolled at 46 hospitals in five global regions between 2017 and 2019. The primary outcome was all-cause mortality at 30 days from the index culture. The strains underwent whole-genome analysis. RESULTS: Of 842 cases, 536 (64%) represented infection. By 30 days, 128 (24%) of the infected patients died, ranging from 1 (6%) of 18 in Australia-Singapore to 54 (25%) of 216 in the United States and 24 (49%) of 49 in South-Central America, whereas 42 (14%) of non-infected patients died. Bacteremia was associated with a higher risk of death compared with other types of infection (40 [42%] of 96 vs 88 [20%] of 440). In a multivariable logistic regression analysis, bloodstream infection and higher age-adjusted Charlson comorbidity index were independently associated with 30-day mortality. Clonal group 2 (CG2) strains predominated except in South-Central America, ranging from 216 (59%) of 369 in the United States to 282 (97%) of 291 in China. Acquired carbapenemase genes were carried by 769 (91%) of the 842 isolates. CG2 strains were significantly associated with higher levels of meropenem resistance, yet non-CG2 cases were over-represented among the deaths compared with CG2 cases. CONCLUSIONS: CRAb infection types and clinical outcomes differed significantly across regions. Although CG2 strains remained predominant, non-CG2 strains were associated with higher mortality. Clinical Trials Registration. NCT03646227.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Humanos , Acinetobacter baumannii/genética , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Estudios Prospectivos , Pruebas de Sensibilidad Microbiana , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/epidemiología , Infecciones por Acinetobacter/microbiología , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
5.
J Transl Med ; 22(1): 237, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38439045

RESUMEN

BACKGROUND: Intratumoral bacteria might play essential roles in tumorigenesis in different cancer types. However, its features and potential roles in hepatocellular carcinoma (HCC) are largely unknown. METHODS: In this study, we assessed bacterial RNA by 16S rRNA fluorescence in situ hybridization and detected bacterial lipopolysaccharide (LPS) via immunohistochemistry. Hepa1-6 cells were used to establish orthotopic HCC models in mice. 2bRAD sequencing for microbiome was performed to determine the intratumoral bacterial characteristics, and liquid chromatography-mass spectrometry was conducted to explore the metabolic profile. The potential association between different intratumoral microbiota and metabolites were evaluated. RESULTS: We detected bacterial 16S rRNA and LPS in HCC tissues from the patients with HCC. In HCC mouse model, we found that the intratumor bacteria in HCC tissues were significantly different to adjacent nontumor tissues. Furthermore, we observed different metabolites in HCC tissues and adjacent nontumor tissues, such as N-acetyl-D-glucosamine and a-lactose. Our results showed that several bacteria were significantly associated with metabolites, such as Pseudomonas koreensis, which was positively correlated with N-acetyl-D-glucosamine and negatively correlated with citrulline. CONCLUSIONS: This study confirmed the close association between different bacteria and metabolites, which might provide novel opportunities for developing new biomarkers and therapeutic targets for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Carcinoma Hepatocelular/genética , ARN Ribosómico 16S/genética , Acetilglucosamina , Hibridación Fluorescente in Situ , Lipopolisacáridos/farmacología , Ratones Endogámicos , Bacterias
6.
Mol Cell Biochem ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856795

RESUMEN

Epigenetics encompasses reversible and heritable chemical modifications of non-nuclear DNA sequences, including DNA and RNA methylation, histone modifications, non-coding RNA modifications, and chromatin rearrangements. In addition to well-studied DNA and histone methylation, RNA methylation has emerged as a hot topic in biological sciences over the past decade. N6-methyladenosine (m6A) is the most common and abundant modification in eukaryotic mRNA, affecting all RNA stages, including transcription, translation, and degradation. Advances in high-throughput sequencing technologies made it feasible to identify the chemical basis and biological functions of m6A RNA. Dysregulation of m6A levels and associated modifying proteins can both inhibit and promote cancer, highlighting the importance of the tumor microenvironment in diverse biological processes. Gastrointestinal tract cancers, including gastric, colorectal, and pancreatic cancers, are among the most common and deadly malignancies in humans. Growing evidence suggests a close association between m6A levels and the progression of gastrointestinal tumors. Global m6A modification levels are substantially modified in gastrointestinal tumor tissues and cell lines compared to healthy tissues and cells, possibly influencing various biological behaviors such as tumor cell proliferation, invasion, metastasis, and drug resistance. Exploring the diagnostic and therapeutic potential of m6A-related proteins is critical from a clinical standpoint. Developing more specific and effective m6A modulators offers new options for treating these tumors and deeper insights into gastrointestinal tract cancers.

7.
Exp Cell Res ; 433(1): 113804, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37806378

RESUMEN

Alcohol dehydrogenase 1 (ADH1) is an alcohol-oxidizing enzyme with poorlydefined biology. Here we report that ADH1 is highly expressed in kidneys of mice with lethal endotoxemia and is transcriptionally upregulated in tubular cells by lipopolysaccharide (LPS) stimuli through TLR4/NF-κB cascade. The Adh1 knockout (Adh1KO) mice with lethal endotoxemia displayed increased susceptibility to acute kidney injury (AKI) but not systemic inflammatory response. Adh1KO mice develop more severe tubular cell apoptosis in comparison to Adh1 wild-type (Adh1WT) mice during course of lethal endotoxemia. ADH1 deficiency facilitates the LPS-induced tubular cell apoptosis in a caspase-dependent manner. Mechanistically, ADH1 deficiency dampens tubular mitophagy that relies on PINK1-Parkin pathway characterized by the reduced membrane potential, reactive oxygen species (ROS) and release of fragmented mtDNA to cytosol. Kidney-specific overexpression of PINK1 and Parkin by adeno-associated viral vector 9 (AAV9) delivery ameliorates AKI exacerbation in Adh1KO mice with lethal endotoxemia. Our study supports the notion that ADH1 is critical for blockade of tubular apoptosis mediated by mitophagy, allowing the rapid identification and targeting of alcohol-metabolic route applicable to septic AKI.

8.
Ann Clin Microbiol Antimicrob ; 23(1): 24, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448920

RESUMEN

BACKGROUND: Klebsiella variicola is considered a newly emerging human pathogen. Clinical isolates of carbapenemase and broad-spectrum ß-lactamase-producing K. variicola remain relatively uncommon. A strain of K. variicola 4253 was isolated from a clinical sample, and was identified to carry the blaIMP-4 and blaSFO-1 genes. This study aims to discern its antibiotic resistance phenotype and genomic characteristics. METHODS: Species identification was conducted using MALDI-TOF/MS. PCR identification confirmed the presence of the blaIMP-4 and blaSFO-1 genes. Antibiotic resistance phenotype and genomic characteristics were detected by antimicrobial susceptibility testing and whole-genome sequencing. Plasmid characterization was carried out through S1-PFGE, conjugation experiments, Southern blot, and comparative genomic analysis. RESULTS: K. variicola 4253 belonged to ST347, and demonstrated resistance to broad-spectrum ß-lactamase drugs and tigecycline while being insensitive to imipenem and meropenem. The blaIMP-4 and blaSFO-1 genes harbored on the plasmid p4253-imp. The replicon type of p4253-imp was identified as IncHI5B, representing a multidrug-resistant plasmid capable of horizontal transfer and mediating the dissemination of drug resistance. The blaIMP-4 gene was located on the In809-like integrative element (Intl1-blaIMP-4-aacA4-catB3), which circulates in Acinetobacter and Enterobacteriaceae. CONCLUSIONS: This study reports the presence of a strain of K. variicola, which is insensitive to tigecycline, carrying a plasmid harboring blaIMP-4 and blaSFO-1. It is highly likely that the strain acquired this plasmid through horizontal transfer. The blaIMP-4 array (Intl1-blaIMP-4-aacA4-catB3) is also mobile in Acinetobacter and Enterobacteriaceae. So it is essential to enhance clinical awareness and conduct epidemiological surveillance on multidrug-resistant K. variicola, conjugative plasmids carrying blaIMP-4, and the In809 integrative element.


Asunto(s)
Acinetobacter , Klebsiella , Humanos , Tigeciclina/farmacología , Klebsiella/genética , Plásmidos/genética , beta-Lactamasas/genética
9.
N Engl J Med ; 382(18): 1708-1720, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32109013

RESUMEN

BACKGROUND: Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of the affected patients. METHODS: We extracted data regarding 1099 patients with laboratory-confirmed Covid-19 from 552 hospitals in 30 provinces, autonomous regions, and municipalities in mainland China through January 29, 2020. The primary composite end point was admission to an intensive care unit (ICU), the use of mechanical ventilation, or death. RESULTS: The median age of the patients was 47 years; 41.9% of the patients were female. The primary composite end point occurred in 67 patients (6.1%), including 5.0% who were admitted to the ICU, 2.3% who underwent invasive mechanical ventilation, and 1.4% who died. Only 1.9% of the patients had a history of direct contact with wildlife. Among nonresidents of Wuhan, 72.3% had contact with residents of Wuhan, including 31.3% who had visited the city. The most common symptoms were fever (43.8% on admission and 88.7% during hospitalization) and cough (67.8%). Diarrhea was uncommon (3.8%). The median incubation period was 4 days (interquartile range, 2 to 7). On admission, ground-glass opacity was the most common radiologic finding on chest computed tomography (CT) (56.4%). No radiographic or CT abnormality was found in 157 of 877 patients (17.9%) with nonsevere disease and in 5 of 173 patients (2.9%) with severe disease. Lymphocytopenia was present in 83.2% of the patients on admission. CONCLUSIONS: During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness. Patients often presented without fever, and many did not have abnormal radiologic findings. (Funded by the National Health Commission of China and others.).


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Brotes de Enfermedades , Pandemias , Neumonía Viral , Adolescente , Adulto , Anciano , COVID-19 , Niño , China/epidemiología , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/terapia , Femenino , Fiebre/etiología , Humanos , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Neumonía Viral/complicaciones , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Neumonía Viral/terapia , SARS-CoV-2 , Adulto Joven
10.
Cell Commun Signal ; 21(1): 359, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38111040

RESUMEN

RNA methylation modification plays a crucial role as an epigenetic regulator in the oncogenesis of hepatocellular carcinoma (HCC). Numerous studies have investigated the molecular mechanisms underlying the methylation of protein-coding RNAs in the progression of HCC. Beyond their impact on mRNA, methylation modifications also influence the biological functions of non-coding RNAs (ncRNAs). Here, we present an advanced and comprehensive overview of the interplay between methylation modifications and ncRNAs in HCC, with a specific focus on their potential implications for the tumor immune microenvironment. Moreover, we summarize promising therapeutic targets for HCC based on methylation-related proteins. In the future, a more profound investigation is warranted to elucidate the effects of ncRNA methylation modifications on HCC pathogenesis and devise valuable intervention strategies. Video Abstract.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Metilación de ARN , ARN no Traducido/genética , ARN no Traducido/metabolismo , Metilación , ARN/metabolismo , Microambiente Tumoral
11.
Pharmacol Res ; 194: 106851, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37453673

RESUMEN

Hypoxia-inducible factor-2α (HIF-2α) is a transcription factor responsible for regulating genes related to angiogenesis and metabolism. This study aims to explore the effect of a previously unreported mutation c.C2473T (p.R825S) in the C-terminal transactivation domain (CTAD) of HIF-2α that we detected in tissue of patients with liver disease. We sequenced available liver and matched blood samples obtained during partial liver resection or liver transplantation performed for clinical indications including hepatocellular carcinoma and liver failure. In tandem, we constructed cell lines and a transgenic mouse model bearing the corresponding identified mutation in HIF-2α from which we extracted primary hepatocytes. Lipid accumulation was evaluated in these cells and liver tissue from the mouse model using Oil Red O staining and biochemical measurements. We identified a mutation in the CTAD of HIF-2α (c.C2473T; p.R825S) in 5 of 356 liver samples obtained from patients with hepatopathy and dyslipidemia. We found that introduction of this mutation into the mouse model led to an elevated triglyceride level, lipid droplet accumulation in liver of the mutant mice and in their extracted primary hepatocytes, and increased transcription of genes related to hepatic fatty acid transport and synthesis in the mutant compared to the control groups. In mutant mice and cells, the protein levels of nuclear HIF-2α and its target perilipin-2 (PLIN2), a lipid droplet-related gene, were also elevated. Decreased lipophagy was observed in mutant groups. Our study defines a subpopulation of dyslipidemia that is caused by this HIF-2α mutation. This may have implications for personalized treatment.


Asunto(s)
Dislipidemias , Neoplasias Hepáticas , Animales , Humanos , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Dislipidemias/genética , Lípidos , Mutación
12.
Crit Rev Food Sci Nutr ; 63(8): 1037-1054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34323634

RESUMEN

With the development of high-throughput DNA sequencing and molecular analysis technologies, next-generation probiotics (NGPs) are increasingly gaining attention as live bacterial therapeutics for treatment of diseases. However, compared to traditional probiotics, NGPs are much more vulnerable to the harsh conditions in the human gastrointestinal tract, and their functional mechanisms in the gut are more complex. Prebiotics have been confirmed to play a critical role in improving the function and viability of traditional probiotics. Defined as substrates that are selectively utilized by host microorganisms conferring a health benefit, prebiotics are also important for NGPs. This review summarizes potential prebiotics for use with NGPs and clarifies their characteristics and functional mechanisms. Then we particularly focus on illustrating the protective effects of various prebiotics by enhancing the antioxidant capacity and their resistance to digestive fluids. We also elucidate the role of prebiotics in regulating anti-bacterial effects, intestinal barrier maintenance, and cross-feeding mechanisms of NPGs. With the expanding range of candidate NGPs and prebiotic substrates, more studies need to be conducted to comprehensively elucidate the interactions between prebiotics and NGPs outside and inside hosts, in order to boost their nutritional and healthcare applications.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Humanos , Prebióticos , Probióticos/farmacología , Tracto Gastrointestinal/microbiología , Disbiosis
13.
Acta Pharmacol Sin ; 44(11): 2201-2215, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37433872

RESUMEN

Pulmonary arterial hypertension (PH) is a chronic disease induced by a progressive increase in pulmonary vascular resistance and failure of the right heart function. A number of studies show that the development of PH is closely related to the gut microbiota, and lung-gut axis might be a potential therapeutic target in the PH treatment. A. muciniphila has been reported to play a critical role in treating cardiovascular disorders. In this study we evaluated the therapeutic effects of A. muciniphila against hypoxia-induced PH and the underlying mechanisms. Mice were pretreated with A. muciniphila suspension (2 × 108 CFU in 200 µL sterile anaerobic PBS, i.g.) every day for 3 weeks, and then exposed to hypoxia (9% O2) for another 4 weeks to induce PH. We showed that A. muciniphila pretreatment significantly facilitated the restoration of the hemodynamics and structure of the cardiopulmonary system, reversed the pathological progression of hypoxia-induced PH. Moreover, A. muciniphila pretreatment significantly modulated the gut microbiota in hypoxia-induced PH mice. miRNA sequencing analysis reveals that miR-208a-3p, a commensal gut bacteria-regulated miRNA, was markedly downregulated in lung tissues exposed to hypoxia, which was restored by A. muciniphila pretreatment. We showed that transfection with miR-208a-3p mimic reversed hypoxia-induced abnormal proliferation of human pulmonary artery smooth muscle cells (hPASMCs) via regulating the cell cycle, whereas knockdown of miR-208a-3p abolished the beneficial effects of A. muciniphila pretreatment in hypoxia-induced PH mice. We demonstrated that miR-208a-3p bound to the 3'-untranslated region of NOVA1 mRNA; the expression of NOVA1 was upregulated in lung tissues exposed to hypoxia, which was reversed by A. muciniphila pretreatment. Furthermore, silencing of NOVA1 reversed hypoxia-induced abnormal proliferation of hPASMCs through cell cycle modulation. Our results demonstrate that A. muciniphila could modulate PH through the miR-208a-3p/NOVA1 axis, providing a new theoretical basis for PH treatment.


Asunto(s)
Hipertensión Pulmonar , MicroARNs , Hipertensión Arterial Pulmonar , Humanos , Ratones , Animales , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Pulmón/patología , Arteria Pulmonar/metabolismo , Hipoxia/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas de Unión al ARN/metabolismo , Proliferación Celular/fisiología , Antígeno Ventral Neuro-Oncológico
14.
Mol Cell ; 57(5): 925-935, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25620561

RESUMEN

Replication and transcription of influenza virus genome mainly depend on its RNA-dependent RNA polymerase (RdRP), composed of the PA, PB1, and PB2 subunits. Although extensively studied, the underlying mechanism of the RdRP complex is still unclear. Here we report the biochemical characterization of influenza RdRP subcomplex comprising PA, PB1, and N terminus of PB2, which exist as dimer in solution and can assemble into a tetramer state, regulated by vRNA promoter. Using single-particle cryo-electron microscopy, we have reconstructed the RdRP tetramer complex at 4.3 Å, highlighting the assembly and interfaces between monomers within the tetrameric structure. The individual RdRP subcomplex contains all the characterized motifs and appears as a cage-like structure. High-throughput mutagenesis profiling revealed that residues involved in the oligomer state formation are critical for viral life cycle. Our results lay a solid base for understanding the mechanism of replication of influenza and other negative-stranded RNA viruses.


Asunto(s)
Microscopía por Crioelectrón/métodos , Orthomyxoviridae/enzimología , ARN Polimerasa Dependiente del ARN/ultraestructura , Proteínas Virales/ultraestructura , Secuencia de Aminoácidos , Animales , Línea Celular , Células HEK293 , Humanos , Imagenología Tridimensional , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Orthomyxoviridae/genética , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , Homología de Secuencia de Aminoácido , Proteínas Virales/química , Proteínas Virales/genética
15.
Hepatobiliary Pancreat Dis Int ; 22(1): 64-71, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36151023

RESUMEN

BACKGROUND: Acute-on-chronic liver failure (ACLF) is a life-threatening syndrome defined as acute decompensation in patients with chronic liver disease. Liver transplantation (LT) is the most effective treatment. We aimed to assess the impact of cirrhosis-related complications pre-LT on the posttransplant prognosis of patients with ACLF. METHODS: This was an observational cohort study conducted between January 2018 and December 2020. Clinical characteristics, cirrhosis-related complications at LT and patient survival post-LT were collected. All liver recipients with ACLF were followed for 1 year post-LT. RESULTS: A total of 212 LT recipients with ACLF were enrolled, including 75 (35.4%) patients with ACLF-1, 64 (30.2%) with ACLF-2, and 73 (34.4%) with ACLF-3. The median waiting time for LT was 11 (4-24) days. The most prevalent cirrhosis-related complication was ascites (78.8%), followed by hepatic encephalopathy (57.1%), bacterial infections (48.1%), hepatorenal syndrome (22.2%) and gastrointestinal bleeding (11.3%). Survival analyses showed that patients with complications at LT had a significantly lower survival probability at both 3 months and 1 year after LT than those without complications (all P < 0.05). A simplified model was developed by assigning one point to each complication: transplantation for ACLF with cirrhosis-related complication (TACC) model. Risk stratification of TACC model identified 3 strata (≥ 4, = 3, and ≤ 2) with high, median and low risk of death after LT (P < 0.001). Moreover, the TACC model showed a comparable ability for predicting the outcome post-LT to the other four prognostic models (chronic liver failure-consortium ACLF score, Chinese Group on the Study of Severe Hepatitis B-ACLF score, model for end-stage liver disease score and Child-Turcotte-Pugh score). CONCLUSIONS: The presence of cirrhosis-related complications pre-LT increases the risk of death post-LT in patients with ACLF. The TACC model based on the number of cirrhosis-related complications pre-LT could stratify posttransplant survival, which might help to determine transplant timing for ACLF.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Enfermedad Hepática en Estado Terminal , Trasplante de Hígado , Humanos , Insuficiencia Hepática Crónica Agudizada/diagnóstico , Insuficiencia Hepática Crónica Agudizada/cirugía , Enfermedad Hepática en Estado Terminal/complicaciones , Índice de Severidad de la Enfermedad , Cirrosis Hepática/complicaciones , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/cirugía , Trasplante de Hígado/efectos adversos , Pronóstico
16.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239939

RESUMEN

Liver cancer is a public disease burden with an increasing incidence rate globally. Bile acid and bile salt's metabolic pathways participate in liver tumorigenesis and regulate the tumor microenvironment. However, there still remains a lack of systematic analysis of the genes related to bile acid and bile salt metabolic pathways in hepatocellular carcinoma (HCC). The mRNA expression data and clinical follow-up information of patients with HCC were obtained from public databases, including The Cancer Genome Atlas, Hepatocellular Carcinoma Database, Gene Expression Omnibus, and IMvigor210. The bile acid and bile salt metabolism-related genes were extracted from Molecular Signatures Database. Univariate Cox and logistic least absolute shrinkage and selection operator regression analyses were conducted to establish the risk model. Single sample gene set enrichment analysis, Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression data, and Tumor Immune Dysfunction and Exclusion were adopted to analyze immune status. The efficiency of the risk model was tested using a decision tree and a nomogram. We determined two molecular subtypes based on bile acid and bile salt metabolism-related genes, with the prognosis of the S1 subtype being markedly superior to the S2 subtype. Next, we established a risk model based on the differentially expressed genes between the two molecular subtypes. The high-risk and low-risk groups showed significant differences in the biological pathways, immune score, immunotherapy response, and drug susceptibility. Our results demonstrated the good predictive performance of the risk model in immunotherapy datasets and established that it could be an essential factor affecting the prognosis of HCC. In conclusion, we identified two molecular subtypes based on bile acid and bile salt metabolism-related genes. The risk model established in our study could effectively predict the prognosis of patients with HCC and their immunotherapeutic response, which may contribute to targeted immunotherapy in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Ácidos y Sales Biliares , Neoplasias Hepáticas/genética , Factores de Riesgo , Carcinogénesis , Microambiente Tumoral/genética , Biomarcadores de Tumor/genética
17.
Mol Cancer ; 21(1): 108, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513849

RESUMEN

CircRNAs, covalently closed noncoding RNAs, are widely expressed in a wide range of species ranging from viruses to plants to mammals. CircRNAs were enriched in the Wnt pathway. Aberrant Wnt pathway activation is involved in the development of various types of cancers. Accumulating evidence indicates that the circRNA/Wnt axis modulates the expression of cancer-associated genes and then regulates cancer progression. Wnt pathway-related circRNA expression is obviously associated with many clinical characteristics. CircRNAs could regulate cell biological functions by interacting with the Wnt pathway. Moreover, Wnt pathway-related circRNAs are promising potential biomarkers for cancer diagnosis, prognosis evaluation, and treatment. In our review, we summarized the recent research progress on the role and clinical application of Wnt pathway-related circRNAs in tumorigenesis and progression.


Asunto(s)
Neoplasias , ARN Circular , Animales , Carcinogénesis/genética , Humanos , Mamíferos/genética , Neoplasias/genética , ARN Circular/genética , ARN no Traducido , Vía de Señalización Wnt
18.
Anal Chem ; 94(27): 9880-9887, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35758637

RESUMEN

Urine sample storage after collection at ultra-low-temperature (e.g., -80 °C) is normally required for comparative metabolome analysis of many samples, and therefore, freeze-thaw cycles (FTCs) are unavoidable. However, the reported effects of FTCs on the urine metabolome are controversial. Moreover, there is no report on the study of how urine FTCs affect biomarker discovery. Herein, we present our study of the FTC effects on the urine metabolome and biomarker discovery using a high-coverage quantitative metabolomics platform. Our study involved two centers located in Hangzhou, China, and Edmonton, Canada, to perform metabolome analysis of two separate cohorts of urine samples. The same workflow of sample preparation and dansylation isotope labeling LC-MS was used for in-depth analysis of the amine/phenol submetabolome. The analysis of 320 samples from the Hangzhou cohort consisting of 80 healthy subjects with each urine being subjected to four FTCs resulted in relative quantification of 3682 metabolites with 3307 identified or mass-matched. The analysis of 176 samples from the Edmonton cohort of 44 subjects with four FTCs quantified 3516 metabolites with 3166 identified or mass-matched. Multivariate and univariate analyses indicated that significant variations (fold change ≥ 1.5 with q-value ≤ 0.05) from FTCs were only observed in a very small fraction of the metabolites (<0.3%). Moreover, various metabolites did not show a consistent pattern of concentration changes from one to four FTCs, allowing the use of two separate cohorts of samples to remove these randomly changed metabolites. Three metabolite biomarkers for separating males and females were discovered, and FTC did not influence their discovery.


Asunto(s)
Metaboloma , Metabolómica , Biomarcadores , Cromatografía Liquida/métodos , Femenino , Humanos , Marcaje Isotópico , Masculino , Espectrometría de Masas/métodos , Metabolómica/métodos
19.
J Autoimmun ; 132: 102867, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35932662

RESUMEN

Gut commensals help shape and mold host immune system and deeply influence human health. The disease spectrum of mankind that gut microbiome may associate with is ever-growing, but the mechanisms are still enigmas. Characterized by loss of self-tolerance and sustained self-attack, systemic lupus erythematosus (SLE) is labeled with chronic inflammation, production of autoantibodies and multisystem injury, which so far are mostly incurable. Gut microbiota and their metabolites, now known as important environmental triggers of local/systemic immune responses, have been proposed to be involved in SLE development and progression probably through the following mechanisms: translocation beyond their niches; molecular mimicry to cross-activate immune response targeting self-antigens; epitope spreading to expand autoantibodies spectrum; and bystander activation to promote systemic inflammation. Gut microbiota which varies between individuals may also influence the metabolism and bio-transformation of disease-modifying anti-rheumatic drugs, thus associated with the efficacy and toxicity of these drugs, adding another explanation for heterogenic therapeutic responses. Modulation of gut microbiota via diet, probiotics/prebiotics, antibiotics/phages, fecal microbiota transplantation, or helminth to restore immune tolerance and homeostasis is expected to be a promising neoadjuvant therapy for SLE. We reviewed the advances in this territory and discussed the application prospect of modulating gut microbiota in controlling SLE.


Asunto(s)
Microbioma Gastrointestinal , Lupus Eritematoso Sistémico , Humanos , Lupus Eritematoso Sistémico/terapia , Trasplante de Microbiota Fecal , Autoanticuerpos , Inflamación
20.
J Autoimmun ; 133: 102904, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36108506

RESUMEN

BACKGROUND & AIMS: Autoimmune hepatitis (AIH) is characterized by hepatocyte destruction, leading to lymphocyte and macrophage accumulation in the liver. Macrophages are key drivers of AIH. A membrane-permeable pan-caspase inhibitor, Z-Val-Ala-DL-Asp-fluoromethylketone (zVAD), induces macrophage necroptosis in response to certain stimuli. However, the function of zVAD in the pathogenesis of autoimmune hepatitis remains elusive. In this study, we aimed to evaluate the effect and explore the underlying mechanisms of zVAD against AIH. METHODS: Murine acute autoimmune liver injury was established by concanavalin A (ConA) injection. Bone marrow-derived macrophages (BMDMs) were used in adoptive cell transfer experiments. The mechanism of action of zVAD was examined using macrophage cell lines and BMDMs. Phosphorylation of mixed lineage kinase domain-like proteins was used as a marker of necroptosis. RESULTS: Treatment with zVAD increased necroptosis, reduced inflammatory cytokine production, and alleviated liver injury in a ConA-induced liver injury mouse model. Regardless of zVAD treatment, macrophage deletion resulted in reduced neutrophil accumulation and relieved ConA-induced liver injury. In vitro studies have shown that zVAD pretreatment promotes lipopolysaccharide-induced macrophage necroptosis and leads to reduced pro-inflammatory cytokine and chemokine secretion. Transferring zVAD-pretreated BMDMs in mice notably reduced ConA-associated liver inflammation and injury, resulting in lower mortality than that observed after transferring normal BMDMs. Mechanistically, zVAD treatment increased the expression of tumour necrosis factor receptor (TNFR)-1 and interleukin (IL)-10 in macrophages. TNFR1 expression decreased upon transfection with IL-10-specific small interfering RNAs and blocking of TNFR1 decreased macrophage necroptosis. CONCLUSIONS: We found that zVAD alleviated ConA-induced liver injury by increasing the sensitivity of macrophages to necroptosis via IL-10-induced TNFR1 expression. This study provides new insights into the treatment of autoimmune hepatitis via zVAD-induced macrophage necroptosis.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Hepatitis Autoinmune , Macrófagos , Necroptosis , Oligopéptidos , Animales , Ratones , Modelos Animales de Enfermedad , Hepatitis Autoinmune/terapia , Interleucina-10 , Oligopéptidos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA