Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Mamm Genome ; 35(2): 256-279, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38538990

RESUMEN

Unexplained recurrent miscarriage (URM) is a common pregnancy complication with few effective therapies. Moreover, little is known regarding the role of pyroptosis in the regulation of the URM immune microenvironment. To address this issue, gene expression profiles of publicly available placental datasets GSE22490 and GSE76862 were downloaded from the Gene Expression Omnibus database. Pyroptosis-related differentially expressed genes were identified and a total of 16 differentially expressed genes associated with pyroptosis were detected, among which 1 was upregulated and 15 were downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that the functionally enriched modules and pathways of these genes are closely related to immune and inflammatory responses. Four hub genes were identified: BTK, TLR8, NLRC4, and TNFSF13B. BTK, TLR8, and TNFSF13B were highly connected with immune cells, according to the correlation analysis of four hub genes and 20 different types of immune cells (p < 0.05). The four hub genes were used as research objects to construct the interaction networks. Chorionic villus tissue was used for quantitative real-time polymerase chain reaction and western blot to confirm the expression levels of hub genes, and the results showed that the expression of the four hub genes was significantly decreased in the chorionic villus tissue in the URM group. Collectively, the present study indicates that perhaps pyroptosis is essential to the diversity and complexity of the URM immune microenvironment, and provides a theoretical basis and research ideas for subsequent target gene verification and mechanism research.


Asunto(s)
Aborto Habitual , Piroptosis , Humanos , Femenino , Piroptosis/genética , Aborto Habitual/genética , Aborto Habitual/inmunología , Embarazo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Ontología de Genes , Placenta/metabolismo , Placenta/inmunología , Transcriptoma , Microambiente Celular/genética , Microambiente Celular/inmunología , Regulación de la Expresión Génica
2.
Respir Res ; 25(1): 201, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725041

RESUMEN

Growth differentiation factor 15 (GDF15) as a stress response cytokine is involved in the development and progression of several diseases associated with metabolic disorders. However, the regulatory role and the underlying mechanisms of GDF15 in sepsis remain poorly defined. Our study analyzed the levels of GDF15 and its correlations with the clinical prognosis of patients with sepsis. In vivo and in vitro models of sepsis were applied to elucidate the role and mechanisms of GDF15 in sepsis-associated lung injury. We observed strong correlations of plasma GDF15 levels with the levels of C-reactive protein (CRP), procalcitonin (PCT), lactate dehydrogenase (LDH), and lactate as well as Sequential Organ Failure Assessment (SOFA) scores in patients with sepsis. In the mouse model of lipopolysaccharide-induced sepsis, recombinant GDF15 inhibited the proinflammatory responses and alleviated lung tissue injury. In addition, GDF15 decreased the levels of cytokines produced by alveolar macrophages (AMs). The anti-inflammatory effect of glycolysis inhibitor 2-DG on AMs during sepsis was mediated by GDF15 via inducing the phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2α) and the expression of activating transcription factor 4 (ATF4). Furthermore, we explored the mechanism underlying the beneficial effects of GDF15 and found that GDF15 inhibited glycolysis and mitogen-activated protein kinases (MAPK)/nuclear factor-κB (NF-κB) signaling via promoting AMPK phosphorylation. This study demonstrated that GDF15 inhibited glycolysis and NF-κB/MAPKs signaling via activating AMP-activated protein kinase (AMPK), thereby alleviating the inflammatory responses of AMs and sepsis-associated lung injury. Our findings provided new insights into novel therapeutic strategies for treating sepsis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Glucólisis , Factor 15 de Diferenciación de Crecimiento , Macrófagos Alveolares , Sepsis , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Proteínas Quinasas Activadas por AMP/metabolismo , Glucólisis/efectos de los fármacos , Factor 15 de Diferenciación de Crecimiento/metabolismo , Lesión Pulmonar/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efectos de los fármacos , Ratones Endogámicos C57BL , Sepsis/metabolismo , Sepsis/tratamiento farmacológico
3.
Virol J ; 21(1): 35, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297280

RESUMEN

BACKGROUND: Progressive hepatitis B virus (HBV) infection can result in cirrhosis, hepatocellular cancer, and chronic hepatitis. While antiviral drugs that are now on the market are efficient in controlling HBV infection, finding a functional cure is still quite difficult. Identifying host factors involved in regulating the HBV life cycle will contribute to the development of new antiviral strategies. Zinc finger proteins have a significant function in HBV replication, according to earlier studies. Zinc finger protein 148 (ZNF148), a zinc finger transcription factor, regulates the expression of various genes by specifically binding to GC-rich sequences within promoter regions. The function of ZNF148 in HBV replication was investigated in this study. METHODS: HepG2-Na+/taurocholate cotransporting polypeptide (HepG2-NTCP) cells and Huh7 cells were used to evaluate the function of ZNF148 in vitro. Northern blotting and real-time PCR were used to quantify the amount of viral RNA. Southern blotting and real-time PCR were used to quantify the amount of viral DNA. Viral protein levels were elevated, according to the Western blot results. Dual-luciferase reporter assays were used to examine the transcriptional activity of viral promoters. ZNF148's impact on HBV in vivo was investigated using an established rcccDNA mouse model. RESULTS: ZNF148 overexpression significantly decreased the levels of HBV RNAs and HBV core DNA in HBV-infected HepG2-NTCP cells and Huh7 cells expressing prcccDNA. Silencing ZNF148 exhibited the opposite effects in both cell lines. Furthermore, ZNF148 inhibited the activity of HBV ENII/Cp and the transcriptional activity of cccDNA. Mechanistic studies revealed that ZNF148 attenuated retinoid X receptor alpha (RXRα) expression by binding to the RXRα promoter sequence. RXRα binding site mutation or RXRα overexpression abolished the suppressive effect of ZNF148 on HBV replication. The inhibitory effect of ZNF148 was also observed in the rcccDNA mouse model. CONCLUSIONS: ZNF148 inhibited HBV replication by downregulating RXRα transcription. Our findings reveal that ZNF148 may be a new target for anti-HBV strategies.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Animales , Humanos , Ratones , ADN Viral/genética , Células Hep G2 , Virus de la Hepatitis B/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Replicación Viral
4.
Dig Dis Sci ; 69(4): 1274-1286, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38446308

RESUMEN

BACKGROUND & AIMS: Kinesin family member 18A (KIF18A) is notable for its aberrant expression across various cancer types and its pivotal role is driving cancer progression. In this study, we aim to investigate the intricate molecular mechanisms underlying the impact of KIF18A on the progression of HCC. METHODS: Western blotting assays, a quantitative real-time PCR and immunohistochemical analyses were performed to quantitatively assess KIF18A expression in HCC tissues. We then performed genetic manipulations within HCC cells by silencing endogenous KIF18A using short hairpin RNA (shRNA) and introducing exogenous plasmids to overexpress KIF18A. We monitored cell progression, analyzed cell cycle and cell apoptosis and assessed cell migration and invasion both in vitro and in vivo. Moreover, we conducted RNA-sequencing to explore KIF18A-related signaling pathways utilizing Reactome and KEGG enrichment methods and validated these critical mediators in these pathways. RESULTS: Analysis of the TCGA-LIHC database revealed pronounced overexpression of KIF18A in HCC tissues, the finding was subsequently confirmed through the analysis of clinical samples obtained from HCC patients. Notably, silencing KIF18A in cells led to an obvious inhibition of cell proliferation, migration and invasion in vitro. Furthermore, in subcutaneous and orthotopic xenograft models, suppression of KIF18A sgnificantly redudce tumor weight and the number of lung metastatic nodules. Mechanistically, KIF18A appears to facilitate cell proliferation by upregulating MAD2 and CDK1/CyclinB1 expression levels, with the activation of SMAD2/3 signaling contributing to KIF18A-driven metastasis. CONCLUSION: Our study elucidates the molecular mechanism by which KIF18A mediates proliferation and metastasis in HCC cells, offering new insights into potential therapeutic targets.


Asunto(s)
Carcinoma Hepatocelular , Cinesinas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , ARN Interferente Pequeño
5.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 128-134, 2024 Jan 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38615174

RESUMEN

Mitochondria are the main site of energy metabolism within cells, generating a substantial amount of ATP to supply energy to the human body. Research has shown that alterations in mitochondrial structure and function exist in individuals with schizophrenia, suggesting their potential impact on the onset of psychiatric disorders and clinical treatment efficacy. Therefore, understanding the research progress on the genetic mechanisms, pathological processes, image manifestations of schizophrenia and mitochondrial quality control, and summarizing the relevant evidence of mitochondrial-related targets as potential therapeutic targets for schizophrenia, can provide references for further research.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/genética , Mitocondrias , Metabolismo Energético
6.
Arch Biochem Biophys ; 744: 109692, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37437834

RESUMEN

Preeclampsia is a potentially life-threatening condition that can arise due to poor placentation and consequent abnormal uterine spiral artery remodeling. Abnormal placentation, in turn, is associated with aberrant trophoblast cell proliferation and apoptosis. Here, we investigated the lncRNA MALAT1 in trophoblast proliferation during early-onset preeclampsia (ePE). MALAT1 levels were examined in placental tissue samples from ePE patients and control patients. The effects and underlying mechanism of MALAT1 on proliferation, migration, invasion and apoptosis were investigated in the first-trimester extravillous trophoblast HTR-8/SVneo cells and the human choriocarcinoma JAR cells. MALAT1 levels were decreased in the placental tissue samples of ePE patients compared with those of control patients, and the levels of MALAT1 were positively correlated with the neonate birth-weight. Knockdown of MALAT1 attenuated the cell viability, proliferation, migration, invasion and the cell cycle progression of trophoblasts, but promoted the apoptosis of trophoblasts. The MALAT1 knockdown promoted miR-101-3p upregulation and VEGFA downregulation. Inhibitor of miR-101-3p increased vascular endothelial growth factor A (VEGFA) expression, and miR-101-3p mimic inhibited VEGFA expression. Luciferase assays showed that miR-101-3p could bind to both MALAT1 and VEGFA. The MALAT1 knockdown-induced induction in the cell vitality and proliferation were attenuated by miR-101-3p inhibitor. We conclude that endogenous MALAT1 promotes proliferation, migration and invasion of trophoblasts by inhibiting the miR-101-3p expression and the subsequent VEGFAupregulation. The reduced MALAT1 level in placental tissue may be involved in the pathogenesis of the ePE.


Asunto(s)
MicroARNs , Preeclampsia , ARN Largo no Codificante , Recién Nacido , Humanos , Femenino , Embarazo , Trofoblastos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Placenta/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Preeclampsia/metabolismo , Fenotipo , Proliferación Celular/genética , Movimiento Celular/genética
7.
Mol Breed ; 43(11): 78, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37928364

RESUMEN

Ear traits are key contributors to grain yield in maize; therefore, exploring their genetic basis facilitates the improvement of grain yield. However, the underlying molecular mechanisms of ear traits remain obscure in both inbred lines and hybrids. Here, two association panels, respectively, comprising 203 inbred lines (IP) and 246 F1 hybrids (HP) were employed to identify candidate genes for six ear traits. The IP showed higher phenotypic variation and lower phenotypic mean than the HP for all traits, except ear tip-barrenness length. By conducting a genome-wide association study (GWAS) across multiple environments, 101 and 228 significant single-nucleotide polymorphisms (SNPs) associated with six ear traits were identified in the IP and HP, respectively. Of these significant SNPs identified in the HP, most showed complete-incomplete dominance and over-dominance effects for each ear trait. Combining a gene co-expression network with GWAS results, 186 and 440 candidate genes were predicted in the IP and HP, respectively, including known ear development genes ids1 and sid1. Of these, nine candidate genes were detected in both populations and expressed in maize ear and spikelet tissues. Furthermore, two key shared genes (GRMZM2G143330 and GRMZM2G171139) in both populations were found to be significantly associated with ear traits in the maize Goodman diversity panel with high-density variations. These findings advance our knowledge of the genetic architecture of ear traits between inbred lines and hybrids and provide a valuable resource for the genetic improvement of ear traits in maize. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01426-9.

8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(10): 1529-1538, 2023 Oct 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38432882

RESUMEN

Antipsychotic medications are commonly used to treat schizophrenia, but they can have negative effects on lipid metabolism, leading to an increased risk of cardiovascular diseases, reduced life expectancy, and difficulties with treatment adherence. The specific mechanisms by which antipsychotics disrupt lipid metabolism are not well understood. Sterol regulatory element-binding proteins (SREBPs) are important transcriptional factors that regulate lipid metabolism. Proprotein convertase subtilisin/kexin type 9 (PCSK9), a gene regulated by SREBPs, plays a critical role in controlling levels of low-density lipoprotein cholesterol (LDL-C) and has become a focus of research on lipid-lowering drugs. Recent studies have shown that antipsychotic drugs can affect lipid metabolism through the SREBP/PCSK9 pathway. A deep understanding of the mechanism for this pathway in antipsychotic drug-related metabolic abnormalities will promote the prevention of lipid metabolism disorders in patients with schizophrenia and the development and application of new drugs.


Asunto(s)
Antipsicóticos , Trastornos del Metabolismo de los Lípidos , Humanos , Antipsicóticos/efectos adversos , Metabolismo de los Lípidos , Proproteína Convertasa 9/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles
9.
Beilstein J Org Chem ; 19: 736-751, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284588

RESUMEN

The past decade witnessed remarkable success in synthetic molecular nanographenes. Encouraged by the widespread application of chiral nanomaterials, the design, and construction of chiral nanographenes is a hot topic recently. As a classic nanographene unit, hexa-peri-hexabenzocoronene generally serves as the building block for nanographene synthesis. This review summarizes the representative examples of hexa-peri-hexabenzocoronene-based chiral nanographenes.

10.
Br J Haematol ; 197(3): 367-372, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35288929

RESUMEN

Primary immune thrombocytopenia (ITP) is an autoimmune haemorrhagic disease that could manifest with comorbid type 2 diabetes mellitus (T2DM). However, the exact impact of T2DM in patients with ITP remains uncertain. In this study, we performed a retrospective cohort study of 458 participants with ITP. The prevalence of T2DM was 7.6% in this population (35 patients), which was slightly lower than the Chinese nationwide prevalence of T2DM, calculated to be approximately 10.9%. The participants with pre-existing T2DM displayed a significantly higher response to therapy than those without T2DM (71% vs. 53%). Furthermore, in the T2DM cohort, the response rate reached 88% when metformin was included in the treatment regimen. This clinical evidence suggests that metformin therapy might improve the clinical outcomes of ITP.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Adulto , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Humanos , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Estudios Retrospectivos , Resultado del Tratamiento
11.
Anesthesiology ; 136(5): 709-731, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35263424

RESUMEN

BACKGROUND: The neural circuitry underlying sevoflurane-induced modulation of consciousness is poorly understood. This study hypothesized that the paraventricular thalamus bed nucleus of the stria terminalis pathway plays an important role in regulating states of consciousness during sevoflurane anesthesia. METHODS: Rabies virus-based transsynaptic tracing techniques were employed to reveal the neural pathway from the paraventricular thalamus to the bed nucleus of the stria terminalis. This study investigated the role of this pathway in sevoflurane anesthesia induction, maintenance, and emergence using chemogenetic and optogenetic methods combined with cortical electroencephalogram recordings. Both male and female mice were used in this study. RESULTS: Both γ-aminobutyric acid-mediated and glutamatergic neurons in the bed nucleus of the stria terminalis receive paraventricular thalamus glutamatergic projections. Chemogenetic inhibition of paraventricular thalamus glutamatergic neurons prolonged the sevoflurane anesthesia emergence time (mean ± SD, hM4D-clozapine N-oxide vs. mCherry-clozapine N-oxide, 281 ± 88 vs. 172 ± 48 s, P < 0.001, n = 24) and decreased the induction time (101 ± 32 vs. 136 ± 34 s, P = 0.002, n = 24), as well as the EC5 0 for the loss or recovery of the righting reflex under sevoflurane anesthesia (mean [95% CI] for the concentration at which 50% of the mice lost their righting reflex, 1.16 [1.12 to 1.20] vs. 1.49 [1.46 to 1.53] vol%, P < 0.001, n = 20; and for the concentration at which 50% of the mice recovered their righting reflex, 0.95 [0.86 to 1.03] vs. 1.34 [1.29 to 1.40] vol%, P < 0.001, n = 20). Similar results were observed during suppression of the paraventricular thalamus bed nucleus-stria terminalis pathway. Optogenetic activation of this pathway produced the opposite effects. Additionally, transient stimulation of this pathway efficiently induced behavioral arousal during continuous steady-state general anesthesia with sevoflurane and reduced the depth of anesthesia during sevoflurane-induced burst suppression. CONCLUSIONS: In mice, axonal projections from the paraventricular thalamic neurons to the bed nucleus of the stria terminalis contribute to regulating states of consciousness during sevoflurane anesthesia.


Asunto(s)
Anestesia , Núcleos Septales , Animales , Estado de Conciencia , Femenino , Masculino , Ratones , Vías Nerviosas , Sevoflurano/farmacología , Tálamo
12.
Mol Cell Biochem ; 477(5): 1555-1568, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35182330

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is rapidly being recognized as the leading cause of chronic liver disease worldwide. Men1, encoding protein of menin, is a key causative gene of multiple endocrine neoplasia type 1 syndrome including pancreatic tumor. It is known that insulin that secretes by endocrine tissue pancreatic islets plays a critical role in hepatic metabolism. Mouse model of hemizygous deletion of Men1 was shown to have severe hepatic metabolism disorders. However, the molecular function of menin on lipid deposition in hepatocytes needs to be further studied. Transcriptome sequencing does show that expression suppression of Men1 in mouse hepatocytes widely affect signaling pathways involved in hepatic metabolism, such as fatty acid metabolism, insulin response, glucose metabolism and inflammation. Further molecular studies indicates that menin overexpression inhibits expressions of the fat synthesis genes Srebp-1c, Fas, and Acc1, the fat differentiation genes Pparγ1 and Pparγ2, and the fat transport gene Cd36, thereby inhibiting the fat accumulation in hepatocytes. The biological process of menin regulating hepatic lipid metabolism was accomplished by interacting with the transcription factor FoxO1, which is also found to be critical for lipid metabolism. Moreover, menin responds to insulin in hepatocytes and mediates its regulatory effect on hepatic metabolism. Our findings suggest that menin is a crucial mediation factor in regulating the hepatic fat deposition, suggesting it could be a potential important therapeutic target for NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Antígenos CD36/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Hepatocitos/metabolismo , Insulina/metabolismo , Metabolismo de los Lípidos/genética , Lípidos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Proto-Oncogénicas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
13.
BMC Med Inform Decis Mak ; 22(1): 343, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581881

RESUMEN

BACKGROUND: We aimed to develop an early warning system for real-time sepsis prediction in the ICU by machine learning methods, with tools for interpretative analysis of the predictions. In particular, we focus on the deployment of the system in a target medical center with small historical samples. METHODS: Light Gradient Boosting Machine (LightGBM) and multilayer perceptron (MLP) were trained on Medical Information Mart for Intensive Care (MIMIC-III) dataset and then finetuned on the private Historical Database of local Ruijin Hospital (HDRJH) using transfer learning technique. The Shapley Additive Explanations (SHAP) analysis was employed to characterize the feature importance in the prediction inference. Ultimately, the performance of the sepsis prediction system was further evaluated in the real-world study in the ICU of the target Ruijin Hospital. RESULTS: The datasets comprised 6891 patients from MIMIC-III, 453 from HDRJH, and 67 from Ruijin real-world data. The area under the receiver operating characteristic curves (AUCs) for LightGBM and MLP models derived from MIMIC-III were 0.98 - 0.98 and 0.95 - 0.96 respectively on MIMIC-III dataset, and, in comparison, 0.82 - 0.86 and 0.84 - 0.87 respectively on HDRJH, from 1 to 5 h preceding. After transfer learning and ensemble learning, the AUCs of the final ensemble model were enhanced to 0.94 - 0.94 on HDRJH and to 0.86 - 0.9 in the real-world study in the ICU of the target Ruijin Hospital. In addition, the SHAP analysis illustrated the importance of age, antibiotics, net balance, and ventilation for sepsis prediction, making the model interpretable. CONCLUSIONS: Our machine learning model allows accurate real-time prediction of sepsis within 5-h preceding. Transfer learning can effectively improve the feasibility to deploy the prediction model in the target cohort, and ameliorate the model performance for external validation. SHAP analysis indicates that the role of antibiotic usage and fluid management needs further investigation. We argue that our system and methodology have the potential to improve ICU management by helping medical practitioners identify at-sepsis-risk patients and prepare for timely diagnosis and intervention. TRIAL REGISTRATION: NCT05088850 (retrospectively registered).


Asunto(s)
Unidades de Cuidados Intensivos , Sepsis , Humanos , Cuidados Críticos , Sepsis/diagnóstico , Área Bajo la Curva , Bases de Datos Factuales
14.
Eur Radiol ; 31(6): 4340-4349, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33219849

RESUMEN

OBJECTIVES: Microenvironment changes had occurred in the metastatic organs before the arriving of the metastatic tumor cells. In this study, we evaluated the effectiveness of computed tomography (CT) images in quantifying the microenvironment changes in the premetastatic lung under both laboratory and clinical conditions. METHOD: Free-breathing Balb/c mice underwent micro-CT repeatedly after the implantation of 4T1 breast tumor. CT-derived indicators (aerated lung volume, lung tissue volume, total lung volume, mean lung density, and the ratio of aerated lung volume to the total lung volume) were quantified. Hematoxylin-eosin staining was used to display the microenvironment changes in premetastatic lung. Moreover, we examined healthy adult women, adult women with histopathologically confirmed primary breast cancer, and adult women with histopathologically confirmed primary breast cancer and lung metastases in our institution to test whether the indicators derived from lung CT images changed with the growth of breast cancer. RESULTS: In 4T1 tumor-bearing mice, lung density is increased before lung masses can be recognized on CT images and is correlated with the severity of inflammation in the lung microenvironment. In primary breast tumor-bearing patients, lung density is also increased before the clinical diagnosis of pulmonary metastasis and is correlated with disease score, which represents tumor progression. CONCLUSIONS: CT is a reliable and quantitative tool that yields dynamic information on metastatic processes. Microenvironmental changes had occurred in patients' lung tissue before the clinical diagnosis of pulmonary metastasis. Our research will provide new insight for clinical research on the premetastatic niche. KEY POINTS: • CT, which provides dynamic information on metastatic processes, is a reliable and quantitative tool to bridge laboratory and clinical studies of the premetastatic niche. • We confirmed that microenvironmental changes occurred in patients' lung tissue before clinicians could diagnose pulmonary metastasis. • Our results provide evidence for the study of the premetastatic niche by analyzing information obtained from CT images.


Asunto(s)
Neoplasias Pulmonares , Microambiente Tumoral , Animales , Humanos , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Ratones , Ratones Endogámicos BALB C , Tomografía Computarizada por Rayos X
15.
BMC Infect Dis ; 21(1): 398, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33926377

RESUMEN

BACKGROUND: Secondary hemophagocytic lymphohistiocytosis (sHLH) is a life-threatening hyperinflammatory event and a fatal complication of viral infections. Whether sHLH may also be observed in patients with a cytokine storm induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is still uncertain. We aimed to determine the incidence of sHLH in severe COVID-19 patients and evaluate the underlying risk factors. METHOD: Four hundred fifteen severe COVID-19 adult patients were retrospectively assessed for hemophagocytosis score (HScore). A subset of 7 patients were unable to be conclusively scored due to insufficient patient data. RESULTS: In 408 patients, 41 (10.04%) had an HScore ≥169 and were characterized as "suspected sHLH positive". Compared with patients below a HScore threshold of 98, the suspected sHLH positive group had higher D-dimer, total bilirubin, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, serum creatinine, triglycerides, ferritin, interleukin-6, C-reactive protein, procalcitonin, lactate dehydrogenase, creatine kinase isoenzyme, troponin, Sequential Organ Failure Assessment (SOFA) score, while leukocyte, hemoglobin, platelets, lymphocyte, fibrinogen, pre-albumin, albumin levels were significantly lower (all P < 0.05). Multivariable logistic regression revealed that high ferritin (>1922.58 ng/mL), low platelets (<101 × 109/L) and high triglycerides (>2.28 mmol/L) were independent risk factors for suspected sHLH in COVID-19 patients. Importantly, COVID-19 patients that were suspected sHLH positive had significantly more multi-organ failure. Additionally, a high HScore (>98) was an independent predictor for mortality in COVID-19. CONCLUSIONS: HScore should be measured as a prognostic biomarker in COVID-19 patients. In particular, it is important that HScore is assessed in patients with high ferritin, triglycerides and low platelets to improve the detection of suspected sHLH.


Asunto(s)
COVID-19/complicaciones , Linfohistiocitosis Hemofagocítica/etiología , Adulto , Anciano , Aspartato Aminotransferasas/sangre , COVID-19/epidemiología , COVID-19/terapia , China/epidemiología , Comorbilidad , Síndrome de Liberación de Citoquinas/complicaciones , Síndrome de Liberación de Citoquinas/virología , Femenino , Ferritinas/sangre , Humanos , Incidencia , Recuento de Linfocitos , Linfohistiocitosis Hemofagocítica/epidemiología , Linfohistiocitosis Hemofagocítica/mortalidad , Masculino , Persona de Mediana Edad , Mortalidad , Estudios Retrospectivos , Factores de Riesgo
16.
J Comput Assist Tomogr ; 45(6): 837-842, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34347709

RESUMEN

OBJECTIVE: The aim of this study was to investigate whether the texture features of lung computed tomography images were altered by primary breast cancer without pulmonary metastasis. METHODS: Texture analysis was performed on the regions of interest of lung computed tomography images from 36 patients with breast cancer and 36 healthy controls. Texture parameters between subjects with different clinical stages and hormone receptor (HR) statuses in patients with breast cancer were analyzed. RESULTS: Three texture parameters (mean, SD, and variance) were significantly different between patients with breast cancer and healthy controls and between preoperative and postoperative stages in patients with breast cancer. All 3 parameters showed an increasing trend under the tumor-bearing state. These parameters were significantly higher in the stage III + IV group than in the stage I + II group. The variance parameter was significantly higher in the HR-negative group than in the HR-positive group. CONCLUSIONS: Texture analysis may serve as a novel additional tool for discovering conventionally invisible changes in the lung tissue of patients with breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Pulmón/anatomía & histología , Tomografía Computarizada por Rayos X/métodos , Adulto , Femenino , Humanos , Persona de Mediana Edad , Estudios Retrospectivos
17.
Angew Chem Int Ed Engl ; 60(46): 24478-24483, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34528358

RESUMEN

Two novel nitrogen-doped, hexa-peri-hexabenzocoronene (HBC)-based nanographenes (NGs) 1 and 2 bearing an azepine and an azocine at the fjord region, respectively, were synthesized and characterized. Notably, structure 1 was synthesized by Diels-Alder reaction of cyclic alkene and tetrachlorothiophene-S,S-dioxide, followed by Suzuki-Miyaura cross-coupling and Scholl-type reactions, which represents a modified strategy to construct NGs. The azo-heptagon-embedded NG 1 leads to a saddle shape, and the azo-octagon-embedded NG 2 exhibits a distorted saddle-helix conformation with the largest torsion angle recorded so far in [5]helicenes. As a result, the different structural topographies for NGs 1 and 2 lead to significant changes in the optical properties including UV absorption and fluorescent emission. Additionally, the 8π-heterocycles azepine and azocine in the NGs 1 and 2 exhibited obvious antiaromatic properties.

18.
Eur Radiol ; 30(8): 4545-4556, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32166487

RESUMEN

OBJECTIVES: To investigate whether subtle changes in radiomics features are present in lung CT images prior to the development of CT-detectable lung metastases in patients with breast cancer. METHODS: Thirty-three radiomics features were measured in the metastasis region (MR) and in matched contralateral tissues (non-metastasis region, NMR) of 29 breast cancer patients at the last CT scan, as well as in the corresponding regions of the patients' pre-metastasis scan (pre-MR and pre-NMR). We also compared them with normal lung tissues (control group, CG) from 29 healthy volunteers. Then, 8 patients from the 29 patients with lung metastases and 8 patients who did not develop lung metastases were chosen for further study of the correlation between radiomics parameters and tumor growth. RESULTS: In the MR vs. NMR and MR vs. CG groups, almost all radiomics features were significantly different. Twenty-six parameters showed significant differences between the pre-MRs and pre-NMRs. Linear fitting demonstrated a significant correlation between 5 features and tumor growth in the metastasis group, but not in the non-metastasis group. Among them, run percentage was the most representative feature. The calculated area under curves (AUCs), based on run percentage for the classification of metastasis and pre-metastasis, were 0.954 and 0.852, respectively. CONCLUSIONS: Radiomics features may allow early detection of lung metastases before they become visually detectable, and the feature run percentage may be a promising image surrogate marker for the microinvasion of tumor cells into the lung tissue. KEY POINTS: • The significant differences in radiomics features between pre-MR and pre-NMR are critical for the early detection of lung metastases. • Five radiomics features show a correlation with tumor growth. • The radiomics feature run percentage may be a potential imaging biomarker for the early detection of lung metastases.


Asunto(s)
Neoplasias de la Mama/patología , Detección Precoz del Cáncer/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/secundario , Tomografía Computarizada por Rayos X/métodos , Área Bajo la Curva , Estudios de Cohortes , Femenino , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Persona de Mediana Edad , Estudios Retrospectivos
19.
Crit Care ; 24(1): 356, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32552872

RESUMEN

BACKGROUND: The aim of this study is to assess the prevalence of abnormal urine analysis and kidney dysfunction in COVID-19 patients and to determine the association of acute kidney injury (AKI) with the severity and prognosis of COVID-19 patients. METHODS: The electronic database of Embase and PubMed were searched for relevant studies. A meta-analysis of eligible studies that reported the prevalence of abnormal urine analysis and kidney dysfunction in COVID-19 was performed. The incidences of AKI were compared between severe versus non-severe patients and survivors versus non-survivors. RESULTS: A total of 24 studies involving 4963 confirmed COVID-19 patients were included. The proportions of patients with elevation of sCr and BUN levels were 9.6% (95% CI 5.7-13.5%) and 13.7% (95% CI 5.5-21.9%), respectively. Of all patients, 57.2% (95% CI 40.6-73.8%) had proteinuria, 38.8% (95% CI 26.3-51.3%) had proteinuria +, and 10.6% (95% CI 7.9-13.3%) had proteinuria ++ or +++. The overall incidence of AKI in all COVID-19 patients was 4.5% (95% CI 3.0-6.0%), while the incidence of AKI was 1.3% (95% CI 0.2-2.4%), 2.8% (95% CI 1.4-4.2%), and 36.4% (95% CI 14.6-58.3%) in mild or moderate cases, severe cases, and critical cases, respectively. Meanwhile, the incidence of AKI was 52.9%(95% CI 34.5-71.4%), 0.7% (95% CI - 0.3-1.8%) in non-survivors and survivors, respectively. Continuous renal replacement therapy (CRRT) was required in 5.6% (95% CI 2.6-8.6%) severe patients, 0.1% (95% CI - 0.1-0.2%) non-severe patients and 15.6% (95% CI 10.8-20.5%) non-survivors and 0.4% (95% CI - 0.2-1.0%) survivors, respectively. CONCLUSION: The incidence of abnormal urine analysis and kidney dysfunction in COVID-19 was high and AKI is closely associated with the severity and prognosis of COVID-19 patients. Therefore, it is important to increase awareness of kidney dysfunction in COVID-19 patients.


Asunto(s)
Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/virología , Betacoronavirus , Infecciones por Coronavirus/epidemiología , Neumonía Viral/epidemiología , Lesión Renal Aguda/orina , COVID-19 , Infecciones por Coronavirus/orina , Humanos , Pandemias , Neumonía Viral/orina , Prevalencia , SARS-CoV-2
20.
Biomed Chromatogr ; 34(10): e4918, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32533577

RESUMEN

From the point of view of drug efficacy and safety, pharmacokinetic profiles of both In this work, a sensitive and reliable liquid chromatographic-tandem mass spectrometric method was established for simultaneous determination of sutetinib and N-oxide metabolite (SNO) in human plasma and further applied to a pharmacokinetic study. Analytes were extracted from plasma samples (100 µl) via acetonitrile-induced protein precipitation and separated on a C18 column using ammonium acetate with ammonium hydroxide and acetonitrile as the mobile phase. Positive electrospray ionization was carried out through multiple reaction monitoring with transitions of m/z 440.2 → 367.1 and 446.2 → 367.1 for sutetinib and SNO, respectively. The method was linear within the concentration range of 0.5-100 ng/ml for both analytes. The precision, accuracy, selectivity, recovery and matrix effect of this method all met the requirements of bioanalytical guidance. In addition, a plasma stability assessment demonstrated unexpected results. Sutetinib was prone to form covalent conjugates with plasma albumin in vitro. The degree of covalent binding increased with increasing temperature, resulting in a significant decrease in its plasma concentrations. However, SNO could not easily bind with albumin owing to steric hindrance or electronegativity. Furthermore, sutetinib and SNO remained stable when blood and plasma samples were kept on wet ice. The validated method was successfully employed for the pharmacokinetic evaluation of sutetinib in patients with advanced malignant solid tumors.


Asunto(s)
Amidas/sangre , Antineoplásicos/sangre , Cromatografía Liquida/métodos , Óxidos/sangre , Inhibidores de Proteínas Quinasas/sangre , Amidas/farmacocinética , Amidas/uso terapéutico , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Humanos , Límite de Detección , Modelos Lineales , Neoplasias/tratamiento farmacológico , Óxidos/farmacocinética , Óxidos/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA