Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Sensors (Basel) ; 24(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38257469

RESUMEN

Environment perception plays a crucial role in autonomous driving technology. However, various factors such as adverse weather conditions and limitations in sensing equipment contribute to low perception accuracy and a restricted field of view. As a result, intelligent connected vehicles (ICVs) are currently only capable of achieving autonomous driving in specific scenarios. This paper conducts an analysis of the current studies on image or point cloud processing and cooperative perception, and summarizes three key aspects: data pre-processing methods, multi-sensor data fusion methods, and vehicle-infrastructure cooperative perception methods. Data pre-processing methods summarize the processing of point cloud data and image data in snow, rain and fog. Multi-sensor data fusion methods analyze the studies on image fusion, point cloud fusion and image-point cloud fusion. Because communication channel resources are limited, the vehicle-infrastructure cooperative perception methods discuss the fusion and sharing strategies for cooperative perception information to expand the range of perception for ICVs and achieve an optimal distribution of perception information. Finally, according to the analysis of the existing studies, the paper proposes future research directions for cooperative perception in adverse weather conditions.

2.
Environ Res ; 218: 114947, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462692

RESUMEN

Advanced biochar blended nanoparticles substances, such as nano biochar or nanocomposites, have provided long-term solutions to a wide range of modern-day problems. Biochar blended nano-composites can be created to create better composite materials that combine the benefits of biochar and nanoparticles. Such materials have been typically improved with active functional groups, porous structure, active surface area, catalytic deterioration ability, as well as easy recovery or separation of pollutants. Such biochar-basednanocomposites have good adsorption properties for a variety of pollutants in various form of polluted medium (soil and water contamination). Catalytic nanoparticle encapsulated biochar, can perform concurrently the adsorption (by biochar) as well as catalytic degradation (nanoparticles) functions for pollutants removal from polluted sites. In this review, the advanced and practically feasible techniques involved in the biochar blended nanoparticles-based nanocomposites have been discussed with environmental applications. Furthermore, the mechanisms involved in this composite material in remediation, as well as the advantages and disadvantages of biochar blended nanoparticles-based nanocomposites, were discussed, and future directions for study in this field were suggested.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Nanocompuestos , Nanopartículas , Contaminantes del Suelo , Contaminantes Químicos del Agua , Carbón Orgánico/química , Suelo , Adsorción , Contaminantes Químicos del Agua/análisis
3.
Sensors (Basel) ; 23(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36679356

RESUMEN

Freeway-diverging areas are prone to low traffic efficiency, congestion, and frequent accidents. Because of the fluctuation of the surrounding traffic flow distribution, the individual decision-making of vehicles in diverging areas is typically unable to plan a departure trajectory that balances safety and efficiency well. Consequently, it is critical that vehicles in freeway-diverging regions develop a lane-changing driving strategy that strives to improve both the safety and efficiency of divergence areas. For CAV leaving the diverging area, this study suggested a full-time horizon optimum solution. Since it is a dynamic strategy, an MPC system based on rolling time horizon optimization was constructed as the primary algorithm of the strategy. A simulation experiment was created to verify the viability of the proposed methodology based on a mixed-flow environment. The results show that, in comparison with the feasible strategies exiting to off-ramp, the proposed strategy can take over 60% reduction in lost time traveling through a diverging area under the premise of safety and comfort without playing a negative impact on the surrounding traffic flow. Thus, the MPC system designed for the subject vehicle is capable of performing an optimal driving strategy in diverging areas within the full-time and space horizon.


Asunto(s)
Accidentes de Tránsito , Conducción de Automóvil , Accidentes de Tránsito/prevención & control , Algoritmos , Simulación por Computador , Seguridad
4.
Molecules ; 28(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36771056

RESUMEN

Soy protein isolate (SPI) is an attractive natural material for preparing wood adhesives that has found broad application. However, poor mechanical properties and unfavorable water resistance of wood composites with SPI adhesive bonds limit its more extensive utilization. The combination of lysine (Lys) with a small molecular structure as a curing agent for modified soy-based wood adhesive allows Lys to penetrate wood pores easily and can result in better mechanical strength of soy protein-based composites, leading to the formation of strong chemical bonds between the amino acid and wood interface. Scanning electron microscopy (SEM) results showed that the degree of penetration of the S/G/L-9% adhesive into the wood was significantly increased, the voids, such as ducts of wood at the bonding interface, were filled, and the interfacial bonding ability of the plywood was enhanced. Compared with the pure SPI adhesive, the corresponding wood breakage rate was boosted to 84%. The wet shear strength of the modified SPI adhesive was 0.64 MPa. When Lys and glycerol epoxy resin (GER) were added, the wet shear strength of plywood prepared by the S/G/L-9% adhesive reached 1.22 MPa, which increased by 29.8% compared with only GER (0.94 MPa). Furthermore, the resultant SPI adhesive displayed excellent thermostability. Water resistance of S/G/L-9% adhesive was further enhanced with respect to pure SPI and S/GER adhesives through curing with 9% Lys. In addition, this work provides a new and feasible strategy for the development and application of manufacturing low-cost, and renewable biobased adhesives with excellent mechanical properties, a promising alternative to traditional formaldehyde-free adhesives in the wood industry.


Asunto(s)
Lisina , Proteínas de Soja , Proteínas de Soja/química , Lisina/análisis , Resinas Epoxi/análisis , Adhesivos/química , Madera/química , Agua/análisis
5.
Geriatr Nurs ; 45: 29-38, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35299030

RESUMEN

This study aimed to systematically review studies of the psychometric properties of the self-rated successful aging inventory (SAI). The literature was rigorously searched from July 2018 to February 2021 and relevant studies were selected and evaluated following the Consensus-based Standards for the selection of health Measurement Instruments guidelines. A total of 23 studies were included, in which 19 instruments were identified. Due to the quality of the studies, only preliminary conclusions could be drawn. Seven instruments were graded "A" and recommended for use based on the available psychometric evidence. The remaining 12 SAI instruments were graded "B" and more research is required before they can be recommended. Based on this review, seven different types of the SAI could be considered for use. To improve the quality of evidence, the SAI requires more rigorous research and precise reports. When using the SAI, it is important to consider cultural characteristics.


Asunto(s)
Envejecimiento , Consenso , Humanos , Psicometría , Reproducibilidad de los Resultados
6.
Aging Ment Health ; 25(11): 2068-2077, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-32677457

RESUMEN

OBJECTIVES: People who find meaning in life can endure 'any' pain. However, there were no tools to investigate elderly individuals' sources of meaning in life in China. This study aimed to develop the Sources of Meaning in Life Scale for the Elderly (SMSE), and examine the validation and reliability in Chinese elderly. METHODS: A 43-item pool of SMSE was formed by combining the preliminary interview and literature review. A cross-sectional survey of 627 elderly people was then conducted in two community health service centers, two hospitals, and two nursing homes in Guangzhou by the convenience sampling method. Test-retest reliability was assessed with 24 elderly persons. RESULTS: Six dimensions, containing family (four items), social support (four items), value (seven items), life security (four items), personal development (four items), and leisure activity (five items) explained 62.16% of the variance in total. Confirmatory factor analysis model fitting indices were χ2 = 694.652, df = 330, χ2/df = 2.105, SRMR = 0.0695, GFI = 0.853, IFI = 0.905, TLI = 0.889, CFI = 0.903, and RMSEA = 0.062. The Cronbach's alpha value of the scale was 0.924, while that of each dimension was between 0.727 and 0.870. The inter-class correlation (ICC) of the scale was 0.856. CONCLUSION: The SMSE has good reliability and validity that can be used to evaluate the sources of meaning and meaning in life for the elderly.


Asunto(s)
Reproducibilidad de los Resultados , Anciano , China , Estudios Transversales , Análisis Factorial , Humanos , Psicometría , Encuestas y Cuestionarios
7.
Horm Metab Res ; 50(11): 811-815, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30223288

RESUMEN

The roles of interleukin-10 (IL-10) gene polymorphisms in diabetes mellitus (DM) have been intensively analyzed earlier, but the results of these studies were conflicting. Hence, we performed this study to better assess the relationship between IL-10 genetic variations and DM. Eligible studies were searched in PubMed, Medline, Embase, and Web of Science. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess correlations between IL-10 polymorphisms and DM. A total of 32 studies were finally included in our analyses. Significant associations with the risk of DM were detected for the rs1800871, rs1800872, and rs1800896 polymorphisms. As for complications in DM, significant association with the risk of diabetic nephropathy (DN) was detected for the rs1800871 polymorphism. In addition, we also found that the rs1800896 polymorphism was significantly associated with the risk of diabetic retinopathy (DR). Further stratified analyses on the basis of type of disease demonstrated that the positive results were predominantly driven by the T2DM subgroup. When we stratified data based on ethnicity of participants, we found that the rs1800871 polymorphism was significantly correlated with DM in Caucasians, the rs1800872 polymorphism was significantly correlated with DM in Asians, and the rs1800896 polymorphism was significantly correlated with DM in both Caucasians and Asians. Our findings indicate that rs1800871, rs1800872, and rs1800896 polymorphisms may serve as genetic biomarkers of DM. Moreover, the rs1800871 and rs1800896 polymorphisms may also contribute to the development of complications in DM.


Asunto(s)
Diabetes Mellitus/genética , Retinopatía Diabética/genética , Interleucina-10/genética , Pueblo Asiatico/genética , Humanos , Polimorfismo Genético , Población Blanca/genética
8.
J Ethnopharmacol ; 333: 118505, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945466

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zuogui Pill (ZGP) is a traditional herbal formula of Chinese Medicine with a long history of use in alleviating ovarian aging. AIM OF THE STUDY: To examine the impact of ZGP on oxidative stress and the stemness of oogonial stem cells (OSCs) in cyclophosphamide (CTX)-induced ovarian aging, as well as its molecular mechanisms involving the nuclear factor erythroid 2-related factor 2 (Nrf2, NFE2L2)/heme oxygenase-1 (HO-1, Hmox1) pathway. MATERIALS AND METHODS: Female Sprague-Dawley (SD) rats were randomly divided into seven groups: control, model (CTX), estradiol valerate (EV, 0.103 mg/kg), ZGP-L (low dose Zuogui Pill, 1.851 g/kg), ZGP-H (high dose Zuogui Pill, 3.702 g/kg), ML385 (30 mg/kg), and ML385+ZGP-L. After CTX modeling, the EV, ZGP-L, ZGP-H, and ML385+ZGP-L groups were treated by gavage for 8 weeks, while the ML385 and ML385+ZGP-L groups were administered the Nrf2 antagonist ML385 twice a week. OSCs were isolated after modeling and then treated with drug serum containing 10% ZGP or 10 µM ML385. The general conditions of the rats, including body weight, ovarian weight/body weight ratio, and estrous cycle, were observed. Ovarian ultrastructure, follicle and corpus luteum counts were assessed via hematoxylin and eosin (H&E) staining. Serum hormone levels were measured using enzyme-linked immunosorbent assay (ELISA). Nrf2/HO-1 pathway, stem cell, germ cell, and cell cycle biomarkers were analyzed by qPCR and Western blot. Cell viability was assessed by cell counting kit-8 (CCK-8) assay. Oxidative stress biomarkers were evaluated using flow cytometry and assay kits. Immunofluorescence was employed to detect and locate OSCs in the ovary, quantify the average fluorescence intensity, and identify OSCs. RESULTS: After ZGP treatment, rats with CTX-induced ovarian aging exhibited improved general condition, increased body weight, higher total ovarian weight to body weight ratio, and a restoration of the estrous cycle similar to the control group. Serum levels of estradiol (E2) and follicle stimulating hormone (FSH), two sex hormones, were also improved. Ovarian ultrastructure and follicle count at all stages showed improvement. Moreover, the viability and proliferation capacity of OSCs were enhanced following ZGP intervention. The Nrf2/HO-1 pathway was found to be down-regulated in CTX-induced aging ovarian OSCs. However, ZGP reversed this effect by activating the expression of Nrf2, HO-1, and NAD(P)H oxidoreductase 1 (NQO1), increasing the activity of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and reducing the accumulation of malonaldehyde (MDA) and reactive oxygen species (ROS), thus restoring resistance to oxidative stress. Additionally, ZGP improved the cell cycle of OSCs, up-regulated the expression of Cyclin D1 and Cyclin E1, restored cell stemness, promoted proliferation, enhanced the expression of cell stemness markers octamer-binding transcription factor 4 (Oct4) and mouse VASA homolog (MVH), and down-regulated the expression of P21, thereby inhibiting apoptosis. The therapeutic effects of ZGP against oxidative stress and restoration of cell stemness were attenuated following inhibition of the Nrf2 signaling pathway using ML385. CONCLUSIONS: ZGP protected against CTX-induced ovarian aging by restoring normal ovarian function, alleviating oxidative stress in aging OSCs, promoting OSCs proliferation, and restoring their stemness in rats, possibly through regulating the Nrf2/HO-1 pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Células Madre Oogoniales , Ovario , Estrés Oxidativo , Transducción de Señal , Animales , Femenino , Ratas , Envejecimiento/efectos de los fármacos , Ciclofosfamida , Medicamentos Herbarios Chinos/farmacología , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Células Madre Oogoniales/efectos de los fármacos , Ovario/efectos de los fármacos , Ovario/metabolismo , Ovario/patología , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
9.
Transl Res ; 266: 68-83, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37995969

RESUMEN

Podocyte damage is the major cause of glomerular injury and proteinuria in multiple chronic kidney diseases. Metadherin (MTDH) is involved in podocyte apoptosis and promotes renal tubular injury in mouse models of diabetic nephropathy and renal fibrosis; however, its role in podocyte injury and proteinuria needs further exploration. Here, we show that MTDH was induced in the glomerular podocytes of patients with proteinuric chronic kidney disease and correlated with proteinuria. Podocyte-specific knockout of MTDH in mice reversed proteinuria, attenuated podocyte injury, and prevented glomerulosclerosis after advanced oxidation protein products challenge or adriamycin injury. Furthermore, specific knockout of MTDH in podocytes repressed ß-catenin phosphorylation at the Ser675 site and inhibited its downstream target gene transcription. Mechanistically, on the one hand, MTDH increased cAMP and then activated protein kinase A (PKA) to induce ß-catenin phosphorylation at the Ser675 site, facilitating the nuclear translocation of MTDH and ß-catenin; on the other hand, MTDH induced the deaggregation of pyruvate kinase M2 (PKM2) tetramers and promoted PKM2 monomers to enter the nucleus. This cascade of events leads to the formation of the MTDH/PKM2/ß-catenin/CBP/TCF4 transcription complex, thus triggering TCF4-dependent gene transcription. Inhibition of PKA activity by H-89 or blockade of PKM2 deaggregation by TEPP-46 abolished this cascade of events and disrupted transcription complex formation. These results suggest that MTDH induces podocyte injury and proteinuria by assembling the ß-catenin-mediated transcription complex by regulating PKA and PKM2 function.


Asunto(s)
Nefropatías Diabéticas , Podocitos , Insuficiencia Renal Crónica , Humanos , Ratones , Animales , Podocitos/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico , Factores de Transcripción/genética , Proteinuria/genética , Proteinuria/metabolismo , Nefropatías Diabéticas/metabolismo , Insuficiencia Renal Crónica/metabolismo , Proteínas de la Membrana , Proteínas de Unión al ARN/metabolismo
10.
J Hazard Mater ; 465: 133127, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38056255

RESUMEN

Aerobic composting is a sustainable and effective waste disposal method. However, it can generate massive amounts of ammonia (NH3) via volatilization. Effectively reducing NH3 volatilization is vital for advancing aerobic composting and protecting the ecological environment. Herein, two crystal types of MnO2 (α-MnO2 and δ-MnO2) are combined with biochar (hydrochar (WHC) and pyrochar (WPC), respectively) and used as conditioners for the aerobic composting of chicken manure. Results reveal that α-MnO2 (34.6%) can more effectively reduce NH3 accumulation than δ-MnO2 (27.1%). Moreover, the combination of WHC and MnO2 better reduces NH3 volatilization (48.5-58.9%) than the combination of WPC and MnO2 (15.8-40.1%). The highest NH3 volatilization reduction effect (58.9%) is achieved using the combination of WHC and δ-MnO2. Because the added WHC and δ-MnO2 promote the humification of the compost, the humic acid to fulvic acid ratio (HA/FA ratio) dramatically increases. The combination of WHC and δ-MnO2 doubled the HA/FA ratio and resulted in a net economic benefit of 130.0 RMB/t. Therefore, WHC and δ-MnO2 co-conditioning can promote compost decomposition, improving the quality of organic fertilizers and substantially reducing NH3 volatilization.

11.
Sci Total Environ ; 912: 168873, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38016558

RESUMEN

Potentially toxic metal-polluted water resources are a heavily discussed topic the pollution by potentially toxic metals can cause significant health risks. Nanomaterials are actively developed towards providing high specific surface area and creating active adsorption sites for the treatment and remediation of these polluted waters. In an effort to tackle the limitations of conventional type adsorbents, nano-hydroxyapatite (HAp) was developed in this study by in situ generation onto wood powder, resulting in the formation of uniform hybrid powder (HAp@wood composite) structure consisting of HAp nanoparticles that showed the removal efficiency up to 80 % after 10 min; the maximum adsorption capacity for Cu(II) ions (98.95 mg/g-HAp) was higher compared to agglomerated nano-HAp (72.85 mg/g-HAp). The adsorption capacity of Cu(II) remained stable (89.85-107.66 mg/g-HAp) during the four adsorption-desorption cycles in multi-component system, thereby demonstrating high selectivity for Cu(II). This approach of using nanoparticle is relatively simple yet effective in improving the adsorption of potentially toxic metals and the developed approach can be used to develop advanced nanocomposites in commercial wastewater treatment.

12.
Water Res ; 259: 121889, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38852389

RESUMEN

Photocatalytic technology emerges as a promising solution for the sustainable treatment of contaminated wastewater. However, the practical implementation of designed photocatalysts often faces challenges due to the intricate 'high carbon footprint' process and limited outdoor laboratory investigations. Herein, a simple yet versatile impregnation approach is proposed to anchor highly dispersed FeCl3 on a g-C3N4 substrate (Fe-C3N4) with minimal energy consumption and post-processing. Fe-C3N4 enhances photocatalytic reactivity for antibiotic degradation via a synergistic photo-Fenton-like oxidation technique, efficiently removing antibiotic pollutants from actual livestock wastewater. The Fe-C3N4 catalyst exhibited consistent degradation performance over five cycles in laboratory conditions, maintaining a degradation efficiency exceeding 90 % for tetracycline hydrochloride (TCHCl). Furthermore, we engineered a straightforward Fe-C3N4Na2SiO3 reactor for treating livestock wastewater, achieving an 81.8 % removal of TCHCl in outdoor field tests conducted in the winter and summer in China. The Fe-C3N4 catalyst demonstrated high feasibility in treating antibiotic-contaminated livestock wastewater under year-round climatic conditions, leveraging synergistic effects. The stabilization of Fe-C3N4 for the degradation of antibiotic-containing wastewater under sunlight represents a significant advancement in the practical application of photocatalysts, marking a crucial milestone from experimental conception to implementation. Acute toxicity estimation suggested that intermediates/products generated exhibited lower toxicity compared to TCHCl, indicating their practical applicability. Density functional theory (DFT) analysis successfully predicted significant electron transfer between Fe-C3N4 and TCHCl, indicating efficient interfacial interactions on the TCHCl surface. To ensure the environmental sustainability of Fe-C3N4, a life cycle assessment (LCA) was conducted to compared this photocatalyst with other commonly used emerging photocatalysts. The results demonstrated that Fe-C3N4 exhibits a two orders of magnitude lower CO2 equivalent emission compared to the ZnO photocatalyst, indicating a cost-effective and efficient synergistic photo-Fenton-like catalytic approach. This low-cost photocatalyst, moving from the laboratory to real-world wastewater applications, provides a powerful and more sustainable solution for the efficient treatment of wastewater containing antibiotics from livestock farming.


Asunto(s)
Ganado , Oxidación-Reducción , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Animales , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos , Compuestos Férricos/química , Catálisis , Hierro/química , Antibacterianos/química
13.
J Hazard Mater ; 470: 134183, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574663

RESUMEN

Nanomaterials present a vast potential as functional materials in environmental engineering. However, there are challenges with nanocomplex for recyclability, reliable/stable, and scale-up industrial integration. Here, a versatile, low-cost, stable and recycled easily metal-polyphenolic-based material carried by wood powder (bioCar-MPNs) adsorption platform was nano-engineered by a simple, fast self-assembly strategy, in which wood powder is an excellent substrate serving as a scaffold and stabilizer to prevent the nanocomplex from aggregating and is easier to recycle. Life cycle analysis highlights a green preparation process and environmental sustainability for bioCar-MPNs. The metal-polyphenolic nanocomplex coated on the wood surface in bioCar-MPNs presents a remarkable surface adsorption property (1829.4 mg/g) at a low cost (2.4 US dollars per 1000 g bioCar-MPNs) for organic dye. Quartz crystal microbalance analysis (QCM) demonstrates an existing strong affinity between polyphenols and organic dyes. Furthermore, Independent Gradient Model (IGM) and Hirshfeld surface analysis reveal the presence of the electrostatic interactions, π-π interactions, and hydrogen bonding. Meanwhile, adsorption efficiency of bioCar-MPNs maintains over 95% in the presence of co-existing ions (Na+, 0.5 M). Importantly, the reasonable utilization of biomass for water treatment can contribute to achieving the high-value and resource utilization of biomass materials.

14.
Am J Clin Nutr ; 120(1): 66-79, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38795741

RESUMEN

BACKGROUND: Our previous studies showed that curcumin prevented hepatic steatosis in animal models. OBJECTIVES: This study aimed to assess the effects of curcumin on hepatic fat content, body composition, and gut microbiota-dependent bile acid (BA) metabolism in patients with nonalcoholic simple fatty liver (NASFL). METHODS: In a 24-wk double-blind randomized trial, 80 patients with NASFL received 500 mg/d curcumin or placebo. Hepatic fat content was measured using FibroTouch-based controlled attenuation parameters (CAPs). Microbial composition and BA metabolites were analyzed using 16S rRNA sequencing and metabolomics. RESULTS: Curcumin consumption significantly reduced CAP value compared with placebo (-17.5 dB/m; 95% confidence interval [CI]: -27.1, -7.8 dB/m; P < 0.001). This corresponded to reduction in weight (-2.6 kg; 95% CI: -4.4, -0.8 kg; P < 0.001) and BMI (-1.0 kg/m2; 95% CI: -2.0, -0.1 kg/m2; P = 0.032) compared with placebo group. Additionally, free fatty acid (-0.12 mmol/L; 95% CI: -0.20, -0.04 mmol/L; P = 0.004), triglycerides (-0.29 mmol/L; 95% CI: -0.41, -0.14 mmol/L; P < 0.001), fasting blood glucose (-0.06 mmol/L; 95% CI: -0.12, -0.01 mmol/L; P = 0.038), hemoglobin A1c (-0.06%; 95% CI: -0.33, -0.01%; P = 0.019), and insulin (-4.94 µU/L; 95% CI: -9.73, -0.15 µU/L; P = 0.043) showed significant reductions in the curcumin group compared with placebo group. Gut microbiota analysis indicated that curcumin significantly decreased Firmicutes to Bacteroidetes ratio and significantly increased Bacteroides abundance. Serum levels of deoxycholic acid, the most potent activator of Takeda G protein-coupled receptor 5 (TGR5), were significantly elevated after curcumin intervention (37.5 ng/mL; 95% CI: 6.7, 68.4 ng/mL; P = 0.018). Curcumin treatment also increased TGR5 expression in peripheral blood mononuclear cells and serum glucagon-like peptide-1 levels (0.73 ng/mL; 95% CI: 0.16, 1.30 ng/mL; P = 0.012). CONCLUSIONS: Improvements in gut microbiota-dependent BA metabolism and TGR5 activation after 24-wk curcumin intervention were associated with a reduction in hepatic fat content in patients with NASFL, providing evidence that curcumin is a potential nutritional therapy for NASFL. The trial was registered at www.chictr.org.cn as ChiCTR2200058052.


Asunto(s)
Ácidos y Sales Biliares , Curcumina , Suplementos Dietéticos , Microbioma Gastrointestinal , Hígado , Enfermedad del Hígado Graso no Alcohólico , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Curcumina/farmacología , Curcumina/administración & dosificación , Masculino , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Femenino , Persona de Mediana Edad , Ácidos y Sales Biliares/metabolismo , Método Doble Ciego , Hígado/metabolismo , Hígado/efectos de los fármacos , Adulto
15.
Chemosphere ; 342: 140202, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37722538

RESUMEN

The behavior and composition of hydrochar-based dissolved organic matter (DOM) would affect the efficiency of copper (Cu) removal from wastewater through adsorption. In this study, the reed was hydrolyzed in the presence of feedwater with and without ZnCl2, FeCl3, and SnCl4 to produce pristine hydrochars (PHCs), which were named H2O-HC, ZnCl2-HC, FeCl3-HC, and SnCl4-HC. After removal of DOM, washed hydrochars (WHCs) were obtained, labelled as W-H2O-HC, W-ZnCl2-HC, W-FeCl3-HC, and W-SnCl4-HC. The release dynamics of DOM from PHCs were analyzed, and the adsorption behaviors of Cu2+ on both PHCs and WHCs were investigated. The results showed that chloride-modifications were beneficial for the porosity, specific surface area (SSA), and functional groups of WHCs. Meanwhile, the quantity of hydrochar-based DOM was significantly affected by chloride-modifications. In particular, the relative contents of Ar-P and Fa-L in the DOM released from hydrochars varied with time and modification. Furthermore, the Qe of Cu2+ adsorption on WHCs followed the order of W-SnCl4-HC > W-FeCl3-HC > W-ZnCl2-HC > W-H2O-HC at 15 °C. Compared to PHCs, the adsorption capacity of Cu2+ on WHCs was improved by 7.15-119.77% at the temperature of 35 °C. Simultaneously, the adsorption capacity of Cu2+ in WHCs showed a significant correlation with the SSA via physical adsorption (P < 0.05). Moreover, XPS analysis revealed that Cu2+ adsorption also occurred via complexation and chelation through newly formed Cu-O group between W-SnCl4-HC and Cu2+. Notably, the increase of Cu2+ adsorption in WHCs was significantly correlated with the release of Fa-L and Ar-P from PHCs (P < 0.05). This study found that the content and composition of hydrochar-based DOM could be a major driving factor for Cu2+ adsorption.

16.
Nutr Metab (Lond) ; 20(1): 53, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041095

RESUMEN

BACKGROUND: Interplay between gut microbiota and heart, termed "gut-heart" axis, has a crucial role in the pathogenesis of atherosclerosis. Our previous study showed that lycopene possesses anti-inflammatory and anti-atherosclerotic effects, but its link to the gut microbiota is poorly understood. Herein, we surmised that lycopene could regulate the gut microbiota, exert anti-atherosclerotic effect by regulating the "gut-heart" axis. METHODS: Male ApoE-/- mice were fed a high-fat diet (HFD) with or without lycopene (0.1% w/w) for 19 weeks. Gut microbiota was analyzed by 16 S rRNA sequencing, the protein levels of zonula occludens-1 (ZO-1), occludin, toll-like receptor 4 (TLR4) and phospho-nuclear factor-κB (NF-κB) p65 were measured by Western blotting, the levels of serum inflammatory factors including monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 were assayed using ELISA kits. Also, the concentrations of serum lipopolysaccharide (LPS), D-lactic acid (D-LA) and diamine peroxidase (DAO) were measured through ELISA method. RESULTS: The aortic sinus sections revealed that lycopene supplementation significantly reduced the extent of atherosclerotic lesions and inhibited atherosclerosis development caused by HFD. The analysis of gut microbiota showed that lycopene reduced the ratio of Firmicutes/Bacteroides and increased the relative abundance of Verrucomicrobia, Akkermansia and Alloprevotella, which were related to elevated intestinal barrier function and reduced inflammation. Moreover, lycopene up-regulated the expression of intestinal ZO-1 and occludin and decreased serum LPS, D-LA and DAO levels. In addition, lycopene inhibited the expression of TLR4 and phospho-NF-κB p65 in aortic sinus plaque, serum MCP-1, TNF-α, IL-1ß, and IL-6 levels were also lowered by lycopene treatment. CONCLUSIONS: Our results indicated the protective effect of lycopene against atherosclerosis induced by HFD and further revealed that its mechanism might be its prebiotic effect on maintaining gut microbiota homeostasis and improving intestinal barrier function, consequently reducing serum LPS-triggered inflammatory response in the heart.

17.
Food Funct ; 14(6): 2642-2656, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36866679

RESUMEN

As a crucial receptor of BHBA and niacin, GPR109A is largely expressed in the mammary gland. However, the role of GPR109A in milk synthesis and its underlying mechanism is still largely unknown. In this study, we first investigated the effect of GPR109A agonists (niacin/BHBA) on milk fat and milk protein synthesis in a mouse mammary epithelial cell line (HC11) and PMECs (porcine mammary epithelial cells). The results showed that both niacin and BHBA promote milk fat and milk protein synthesis with the activation of mTORC1 signaling. Importantly, knockdown GPR109A attenuated the niacin-induced increase of milk fat and protein synthesis and the niacin-induced activation of mTORC1 signaling. Furthermore, we found that GPR109A downstream G protein-Gαi and -Gßγ participated in the regulation of milk synthesis and the activation of mTORC1 signaling. Consistent with the finding in vitro, dietary supplementation with niacin increases milk fat and protein synthesis in mice with the activation of GPR109A-mTORC1 signaling. Collectively, GPR109A agonists promote the synthesis of milk fat and milk protein through the GPR109A/Gi/mTORC1 signaling pathway.


Asunto(s)
Niacina , Receptores Nicotínicos , Ratones , Animales , Porcinos , Niacina/farmacología , Niacina/metabolismo , Ácido 3-Hidroxibutírico , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de la Leche/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo
18.
Carbohydr Polym ; 318: 121102, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37479451

RESUMEN

Gum-based hydrogels (GBHs) have been widely employed in diverse water purification processes due to their environmental properties, and high absorption capacity. More desired properties of GBHs such as biodegradability, biocompatibility, material cost, simplicity of manufacture, and wide range of uses have converted them into promising materials in water treatment processes. In this review, we explored the application of GBHs to remove pollutants from contaminated waters. Water resources are constantly being contaminated by a variety of harmful effluents such as heavy metals, dyes, and other dangerous substances. A practical way to remove chemical waste from water as a vital component is surface adsorption. Currently, hydrogels, three-dimensional polymeric networks, are quite popular for adsorption. They have more extensive uses in several industries, including biomedicine, water purification, agriculture, sanitary products, and biosensors. This review will help the researcher to understand the research gaps and drawbacks in this field, which will lead to further developments in the future.

19.
Comput Math Methods Med ; 2022: 3293054, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35096128

RESUMEN

OBJECTIVE: To investigate the effect of dapagliflozin (DAPA) on cardiac hypertrophy induced by type 2 diabetes mellitus (T2DM) and its mechanism. METHODS: SD rats with T2DM were divided into a T2DM group (n = 6) and DAPA group (n = 6). They were, respectively, fed with the same amount of normal saline and 1 mg/kg DAPA. The control group (n = 6) was also fed with normal saline. The hearts were tested by the application of echocardiography and hemodynamics. Subsequently, fasting blood glucose (FBG), serum total cholesterol (TC), and triglyceride (TG) as well as interleukin- (IL-) 10, IL-6, and tumor necrosis factor (TNF)-α in serum were tested. H&E and Masson staining was performed to observe the degree of cardiac tissue lesions, and expression of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), calpain-1, p-IκBα, and p65 in myocardial tissue was tested by qRT-PCR and Western blot. RESULTS: Compared with the control group, rats in the T2DM group exhibited significant diabetic symptoms: FBG was significantly elevated, and the levels of TC, TG, IL-6, and TNF-α were significantly increased, while the levels of IL-10 and the calpain activity were evidently decreased. However, DAPA treatment could improve the above changes. At the same time, the damage and fibrosis of the heart tissue in the DAPA group were markedly improved. Additionally, the mRNA expression of ANP and BNP in myocardial tissue of the DAPA group was markedly increased. And DAPA could inhibit the expression of p-IκBα/IκBα in the cytoplasm and p65 in the nucleus as well as the expression of calpain-1 in myocardial tissue. CONCLUSION: DAPA treatment ameliorates the cardiac hypertrophy caused by T2DM by decreasing body blood glucose, while reducing the expression of calpain-1 in cardiomyocytes and inhibiting the nuclear translocation of NF-κB.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Calpaína/antagonistas & inhibidores , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/etiología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Glucósidos/farmacología , FN-kappa B/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Glucemia/metabolismo , Calpaína/metabolismo , Cardiomegalia/metabolismo , Biología Computacional , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Mediadores de Inflamación/sangre , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Estreptozocina/toxicidad
20.
Animals (Basel) ; 12(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35327124

RESUMEN

Mammary gland morphology varies considerably between pregnancy and lactation status, e.g., virgin to pregnant and lactation to weaning. Throughout these critical developmental phases, the mammary glands undergo remodeling to accommodate changes in milk production capacity, which is positively correlated with milk protein expression. The purpose of this study was to investigate the microRNA (miRNA) expression profiles in female ICR mice's mammary glands at the virgin stage (V), day 16 of pregnancy (P16d), day 12 of lactation (L12d), day 1 of forced weaning (FW1d), and day 3 of forced weaning (FW3d), and to identify the miRNAs regulating milk protein gene expression. During the five stages of testing, 852 known miRNAs and 179 novel miRNAs were identified in the mammary glands. Based on their expression patterns, the identified miRNAs were grouped into 12 clusters. The expression pattern of cluster 1 miRNAs was opposite to that of milk protein genes in mammary glands in all five different stages. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the predicted target genes of cluster 1 miRNAs were related to murine mammary gland development and lactation. Furthermore, fluorescence in situ hybridization (FISH) analysis revealed that the novel-mmu-miR424-5p, which belongs to the cluster 1 miRNAs, was expressed in murine mammary epithelial cells. The dual-luciferase reporter assay revealed that an important milk protein gene-ß-casein (CSN2)-was regarded as one of the likely targets for the novel-mmu-miR424-5p. This study analyzed the expression patterns of miRNAs in murine mammary glands throughout five critical developmental stages, and discovered a novel miRNA involved in regulating the expression of CSN2. These findings contribute to an enhanced understanding of the developmental biology of mammary glands, providing guidelines for increasing lactation efficiency and milk quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA