Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Molecules ; 26(14)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34299648

RESUMEN

Using dynamic liquid-state NMR spectroscopy a degenerate double proton tautomerism was detected in tetramethyl reductic acid (TMRA) dissolved in toluene-d8 and in CD2Cl2. Similar to vitamin C, TMRA belongs to the class of reductones of biologically important compounds. The tautomerism involves an intramolecular HH transfer that interconverts the peripheric and the central positions of the two OH groups. It is slow in the NMR time scale around 200 K and fast at room temperature. Pseudo-first-order rate constants of the HH transfer and of the HD transfer after suitable deuteration were obtained by line shape analyses. Interestingly, the chemical shifts were found to be temperature dependent carrying information about an equilibrium between a hydrogen bonded dimer and a monomer forming two weak intramolecular hydrogen bonds. The structures of the monomer and the dimer are discussed. The latter may consist of several rapidly interconverting hydrogen-bonded associates. A way was found to obtain the enthalpies and entropies of dissociation, which allowed us to convert the pseudo-first-order rate constants of the reaction mixture into first-order rate constants of the tautomerization of the monomer. Surprisingly, these intrinsic rate constants were the same for toluene-d8 and CD2Cl2, but in the latter solvent more monomer is formed. This finding is attributed to the dipole moment of the TMRA monomer, compensated in the dimer, and to the larger dielectric constant of CD2Cl2. Within the margin of error, the kinetic HH/HD isotope effects were found to be of the order of 3 but independent of temperature. That finding indicates a stepwise HH transfer involving a tunnel mechanism along a double barrier pathway. The Arrhenius curves were described in terms of the Bell-Limbach tunneling model.

2.
J Chem Phys ; 151(24): 244201, 2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31893872

RESUMEN

In recent years, the hyperpolarization method Signal Amplification By Reversible Exchange (SABRE) has developed into a powerful technique to enhance Nuclear Magnetic Resonance (NMR) signals of organic substrates in solution (mostly via binding to the nitrogen lone pair of N-heterocyclic compounds) by several orders of magnitude. In order to establish the application and development of SABRE as a hyperpolarization method for medical imaging, the separation of the Ir-N-Heterocyclic Carbene (Ir-NHC) complex, which facilitates the hyperpolarization of the substrates in solution, is indispensable. Here, we report for the first time the use of novel Ir-NHC complexes with a polymer unit substitution in the backbone of N-Heterocyclic Carbenes (NHC) for SABRE hyperpolarization, which permits the removal of the complexes from solution after the hyperpolarization of a target substrate has been generated.

3.
J Labelled Comp Radiopharm ; 62(14): 914-919, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31677176

RESUMEN

15 N-labelled pyridines are liquid- and solid-state nuclear magnetic resonance (NMR) probes for chemical and biological environments because their 15 N chemical shifts are sensitive to hydrogen-bond and protonation states. By variation of the type and number of substituents, different target pyridines can be synthesized exhibiting different pKa values and molecular volumes. Various synthetic routes have been described in the literature, starting from different precursors or modification of other 15 N-labelled pyridines. In this work, we have explored the synthesis of 15 N 15 N-labelled pyridines using a two-step process via the synthesis of alkoxy-3,4-dihydro-2H-pyran as precursor exhibiting already the desired pyridine substitution pattern. As an example, we have synthesized 3,5-dimethylpyridine-15 N (lutidine-15 N) as demonstrated by 15 N-NMR spectroscopy. That synthesis starts from methacrolein, propenyl ether, and 15 N-labelled NH4 Cl as nitrogen source.


Asunto(s)
Isótopos de Nitrógeno/química , Piridinas/química , Piridinas/síntesis química , Técnicas de Química Sintética , Enlace de Hidrógeno , Marcaje Isotópico
4.
J Labelled Comp Radiopharm ; 62(7): 298-300, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31125993

RESUMEN

A variation of the Perkin reaction using a nonenolizable anhydride as the condensation agent allows for the effective conversion of valuable carboxylic acids to the corresponding cinnamates.


Asunto(s)
Ácido Acético/química , Isótopos de Carbono/química , Cinamatos/química , Cinamatos/síntesis química , Técnicas de Química Sintética , Marcaje Isotópico , Radioquímica
5.
Phys Chem Chem Phys ; 20(16): 10697-10712, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29303516

RESUMEN

The equilibration of H2, HD and D2 between the gas phase and surface hydrides of solid organic-ligand-stabilized Ru metal nanoparticles has been studied by gas phase 1H NMR spectroscopy using closed NMR tubes as batch reactors at room temperature and 800 mbar. When two different nanoparticle systems, Ru/PVP (PVP ≡ polyvinylpyrrolidone) and Ru/HDA (HDA ≡ hexadecylamine) were exposed to D2 gas, only the release of HD from the hydride containing surface could be detected in the initial stages of the reaction, but no H2. In the case of Ru/HDA also the reverse experiment was performed where surface deuterated nanoparticles were exposed to H2. In that case, the conversion of H2 into gaseous HD was detected. In order to analyze the experimental kinetic and spectroscopic data, we explored two different mechanisms taking into account potential kinetic and equilibrium H/D isotope effects. Firstly, we explored the dissociative exchange mechanism consisting of dissociative adsorption of dihydrogen, fast hydride surface diffusion and associative desorption of dihydrogen. It is shown that if D2 is the reaction partner, only H2 will be released in the beginning of the reaction, and HD only in later reaction stages. The second mechanism, dubbed here associative exchange consists of the binding of dihydrogen to Ru surface atoms, followed by a H-transfer to or by H-exchange with an adjacent hydride site, and finally of the associative desorption of dihydrogen. In that case, in the exchange with D2, only HD will be released in the beginning of the reaction. Our experimental results are not compatible with the dissociative exchange but can be explained in terms of the associative exchange. Whereas the former will dominate at low temperatures and pressures, the latter will prevail around room temperature and normal pressures where transition metal nanoparticles are generally used as reaction catalysts.

6.
J Phys Chem A ; 121(45): 8697-8705, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29064692

RESUMEN

Hydrogen bond geometries in the proton-bound homodimers of quinoline and acridine derivatives in an aprotic polar solution have been experimentally studied using 1H NMR at 120 K. The reported results show that an increase of the dielectric permittivity of the medium results in contraction of the N···N distance. The degree of contraction depends on the homodimer's size and its substituent-specific solvation features. Neither of these effects can be reproduced using conventional implicit solvent models employed in computational studies. In general, the N···N distance in the homodimers of pyridine, quinoline, and acridine derivatives decreases in the sequence gas phase > solid state > polar solvent.

7.
Chemistry ; 21(7): 2915-29, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25521423

RESUMEN

By using a combination of liquid and solid-state NMR spectroscopy, (15) N-labeled 4-methylimidazole (4-MI) as a local probe of the environment has been studied: 1) in the polar, wet Freon CDF3 /CDF2 Cl down to 130 K, 2) in water at pH 12, and 3) in solid samples of the mutant H64A of human carbonic anhydrase II (HCA II). In the latter, the active-site His64 residue is replaced by alanine; the catalytic activity is, however, rescued by the presence of 4-MI. For the Freon solution, it is demonstrated that addition of water molecules not only catalyzes proton tautomerism but also lifts its quasidegeneracy. The possible hydrogen-bond clusters formed and the mechanism of the tautomerism are discussed. Information about the imidazole hydrogen-bond geometries is obtained by establishing a correlation between published (1) H and (15) N chemical shifts of the imidazole rings of histidines in proteins. This correlation is useful to distinguish histidines embedded in the interior of proteins and those at the surface, embedded in water. Moreover, evidence is obtained that the hydrogen-bond geometries of His64 in the active site of HCA II and of 4-MI in H64A HCA II are similar. Finally, the degeneracy of the rapid tautomerism of the neutral imidazole ring His64 reported by Shimahara et al. (J. Biol. Chem.- 2007, 282, 9646) can be explained with a wet, polar, nonaqueous active-site conformation in the inward conformation, similar to the properties of 4-MI in the Freon solution. The biological implications for the enzyme mechanism are discussed.


Asunto(s)
Anhidrasa Carbónica II/química , Histidina/química , Imidazoles/química , Espectroscopía de Resonancia Magnética/métodos , Humanos , Hidrógeno , Enlace de Hidrógeno
8.
Phys Chem Chem Phys ; 17(6): 4634-44, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25586486

RESUMEN

We present a joint experimental and quantum chemical study on the influence of solvent dynamics on the protonation equilibrium in a strongly hydrogen bonded phenol-acetate complex in CD2Cl2. Particular attention is given to the correlation of the proton position distribution with the internal conformation of the complex itself and with fluctuations of the aprotic solvent. Specifically, we have focused on a complex formed by 4-nitrophenol and tetraalkylammonium-acetate in CD2Cl2. Experimentally we have used combined low-temperature (1)H and (13)C NMR and UV-vis spectroscopy and showed that a very strong OHO hydrogen bond is formed with proton tautomerism (PhOH···(-)OAc and PhO(-)···HOAc forms, both strongly hydrogen bonded). Computationally, we have employed ab initio molecular dynamics (70 and 71 solvent molecules, with and without the presence of a counter-cation, respectively). We demonstrate that the relative motion of the counter-cation and the "free" carbonyl group of the acid plays the major role in the OHO bond geometry and causes proton "jumps", i.e. interconversion of PhOH···(-)OAc and PhO(-)···HOAc tautomers. Weak H-bonds between CH(CD) groups of the solvent and the oxygen atom of carbonyl stabilize the PhOH···(-)OAc type of structures. Breaking of CH···O bonds shifts the equilibrium towards PhO(-)···HOAc form.

9.
Phys Chem Chem Phys ; 16(20): 9327-36, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24715202

RESUMEN

Mesoporous carbon materials were synthesized employing polymers and silica gels as structure directing templates. The basic physico-chemical properties of the synthetic mesoporous materials were characterized by (1)H and (13)C MAS solid-state NMR, X-ray diffraction, transmission electron microscopy (TEM) and nitrogen adsorption measurements. The confinement effects on small guest molecules such as water, benzene and pyridine and their interactions with the pore surface were probed by a combination of variable temperature (1)H-MAS NMR and quantum chemical calculations of the magnetic shielding effect of the surface on the solvent molecules. The interactions of the guest molecules depend strongly on the carbonization temperature and the pathway of the synthesis. All the guest-molecules, water, benzene and pyridine, exhibited high-field shifts by the interaction with the surface of carbon materials. The geometric confinement imposed by the surface causes a strong depression of the melting point of the surface phase of water and benzene. The theoretical calculation of (1)H NICS maps shows that the observed proton chemical shifts towards high-field values can be explained as the result of electronic ring currents localized in aromatic groups on the surface. The dependence on the distance between the proton and the aromatic surface can be exploited to estimate the average diameter of the confinement structures.

10.
J Phys Chem A ; 118(45): 10804-12, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25327551

RESUMEN

Hydrogen bond geometries in the proton-bound homodimers of ortho-unsubstituted and ortho-methylsubstituted pyridine derivatives in aprotic polar solution were estimated using experimental NMR data. Within the series of homodimers studied the hydrogen bond lengths depend on the proton affinity of pyridines and--at least for the ortho-methylsubstituted pyridines--on the pKa of the conjugate acids in an approximately quadratic manner. The shortest possible hydrogen bond in the homodimers of ortho-unsubstituted pyridines is characterized by the N···N distance of 2.613 Å. Steric repulsion between the methyl groups of the ortho-methylsubstituted pyridines becomes operative at an N···N distance of ∼2.7 Å and limits the closest approach to 2.665 Å.


Asunto(s)
Enlace de Hidrógeno , Protones , Piridinas/química , Dimerización , Gases/química , Hidrógeno/química , Iones/química , Espectroscopía de Resonancia Magnética , Nitrógeno/química
11.
J Am Chem Soc ; 135(20): 7553-66, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23607931

RESUMEN

Heteroconjugated hydrogen-bonded anions A···H···X(-) of phenols (AH) and carboxylic/inorganic acids (HX) dissolved in CD2Cl2 and CDF3/CDF2Cl have been studied by combined low-temperature UV-vis and (1)H/(13)C NMR spectroscopy (UVNMR). The systems constitute small molecular models of hydrogen-bonded cofactors in proteins such as the photoactive yellow protein (PYP). Thus, the phenols studied include the PYP cofactor 4-hydroxycinnamic acid methyl thioester, and the more acidic 4-nitrophenol and 2-chloro-4-nitrophenol which mimic electronically excited cofactor states. It is shown that the (13)C chemical shifts of the phenolic residues of A···H···X(-), referenced to the corresponding values of A···H···A(-), constitute excellent probes for the average proton positions. These shifts correlate with those of the H-bonded protons, as well as with the H/D isotope effects on the (13)C chemical shifts. A combined analysis of UV-vis and NMR data was employed to elucidate the proton transfer pathways in a qualitative way. Dual absorption bands of the phenolic moiety indicate a double-well situation for the shortest OHO hydrogen bonds studied. Surprisingly, when the solvent polarity is low the carboxylates are protonated whereas the proton shifts toward the phenolic oxygens when the polarity is increased. This finding indicates that because of stronger ion-dipole interactions small anions are stabilized at high solvent polarity and large anions exhibiting delocalized charges at low solvent polarities. It also explains the large acidity difference of phenols and carboxylic acids in water, and the observation that this difference is strongly reduced in the interior of proteins when both partners form mutual hydrogen bonds.


Asunto(s)
Ácidos Carboxílicos/química , Fenoles/química , Protones , Aniones/química , Medición de Intercambio de Deuterio , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Estructura Molecular , Solventes/química , Espectrofotometría Ultravioleta
12.
J Am Chem Soc ; 135(48): 18160-75, 2013 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-24147985

RESUMEN

Using (15)N solid-state NMR, we have studied protonation and H-bonded states of the cofactor pyridoxal 5'-phosphate (PLP) linked as an internal aldimine in alanine racemase (AlaR), aspartate aminotransferase (AspAT), and poly-L-lysine. Protonation of the pyridine nitrogen of PLP and the coupled proton transfer from the phenolic oxygen (enolimine form) to the aldimine nitrogen (ketoenamine form) is often considered to be a prerequisite to the initial step (transimination) of the enzyme-catalyzed reaction. Indeed, using (15)N NMR and H-bond correlations in AspAT, we observe a strong aspartate-pyridine nitrogen H-bond with H located on nitrogen. After hydration, this hydrogen bond is maintained. By contrast, in the case of solid lyophilized AlaR, we find that the pyridine nitrogen is neither protonated nor hydrogen bonded to the proximal arginine side chain. However, hydration establishes a weak hydrogen bond to pyridine. To clarify how AlaR is activated, we performed (13)C and (15)N solid-state NMR experiments on isotopically labeled PLP aldimines formed by lyophilization with poly-L-lysine. In the dry solid, only the enolimine tautomer is observed. However, a fast reversible proton transfer involving the ketoenamine tautomer is observed after treatment with either gaseous water or gaseous dry HCl. Hydrolysis requires the action of both water and HCl. The formation of an external aldimine with aspartic acid at pH 9 also produces the ketoenamine form stabilized by interaction with a second aspartic acid, probably via a H-bond to the phenolic oxygen. We postulate that O-protonation is an effectual mechanism for the activation of PLP, as is N-protonation, and that enzymes that are incapable of N-protonation employ this mechanism.


Asunto(s)
Alanina Racemasa/química , Aspartato Aminotransferasas/química , Escherichia coli/enzimología , Geobacillus stearothermophilus/enzimología , Polilisina/química , Fosfato de Piridoxal/química , Escherichia coli/química , Geobacillus stearothermophilus/química , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Protones
13.
Chemphyschem ; 14(13): 3026-33, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-23658058

RESUMEN

In the last years, the combination of (2)H solid-state NMR techniques with quantum-chemical calculations has evolved into a powerful spectroscopic tool for the characterization of the state of hydrogen on the surfaces of heterogeneous catalysts. In the present minireview, a brief summary of this development is given, in which investigations of the structure and dynamics of hydrogen in molecular complexes, clusters and nanoparticle systems are presented, aimed to understand the reaction mechanisms on the surface of hydrogenation catalysts. The surface state of deuterium/hydrogen is analyzed employing a combination of variable-temperature (2)H static and magic-angle spinning (MAS) solid-state NMR techniques, in which the dominant quadrupolar interactions of deuterium give information on the binding situation and local symmetry of deuterium/hydrogen on molecular species. Using a correlation database from molecular complexes and clusters, the possibility to distinguish between terminal Ru-D, bridged Ru2-D, three-fold Ru3-D, and interstitial Ru6-D is demonstrated. Combining these results with quantum-chemical density functional theory (DFT) calculations allows the interpretation of (2)H solid-state data of complex "real world" nanostructures, which yielded new insights into reaction pathways at the molecular level.

14.
Biochim Biophys Acta ; 1814(11): 1426-37, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21703367

RESUMEN

In this contribution we review recent NMR studies of protonation and hydrogen bond states of pyridoxal 5'-phosphate (PLP) and PLP model Schiff bases in different environments, starting from aqueous solution, the organic solid state to polar organic solution and finally to enzyme environments. We have established hydrogen bond correlations that allow one to estimate hydrogen bond geometries from (15)N chemical shifts. It is shown that protonation of the pyridine ring of PLP in aspartate aminotransferase (AspAT) is achieved by (i) an intermolecular OHN hydrogen bond with an aspartate residue, assisted by the imidazole group of a histidine side chain and (ii) a local polarity as found for related model systems in a polar organic solvent exhibiting a dielectric constant of about 30. Model studies indicate that protonation of the pyridine ring of PLP leads to a dominance of the ketoenamine form, where the intramolecular OHN hydrogen bond of PLP exhibits a zwitterionic state. Thus, the PLP moiety in AspAT carries a net positive charge considered as a pre-requisite to initiate the enzyme reaction. However, it is shown that the ketoenamine form dominates in the absence of ring protonation when PLP is solvated by polar groups such as water. Finally, the differences between acid-base interactions in aqueous solution and in the interior of proteins are discussed. This article is part of a special issue entitled: Pyridoxal Phosphate Enzymology.


Asunto(s)
Fosfato de Piridoxal/química , Aminas/química , Enlace de Hidrógeno , Lisina/química , Espectroscopía de Resonancia Magnética , Protones , Soluciones , Agua
15.
J Phys Chem A ; 116(46): 11370-87, 2012 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-22861155

RESUMEN

We have studied the hydrogen bond interactions of (15)N labeled 4-methylpyridine (4-MP) with pentachlorophenol (PCP) in the solid state and in polar solution using various NMR techniques. Previous spectroscopic, X-ray, and neutron crystallographic studies showed that the triclinic 1:1 complex (4-MPPCP) exhibits the strongest known intermolecular OHN hydrogen bond in the solid state. By contrast, deuteration of the hydrogen bond gives rise to the formation of a monoclinic structure exhibiting a weaker hydrogen bond. By performing NMR experiments at different deuterium fractions and taking advantage of dipolar (1)H-(15)N recoupling under combined fast MAS and (1)H decoupling, we provide an explanation of the origin of the isotopic polymorphism of 4-MPPCP and improve previous chemical shift correlations for OHN hydrogen bonds. Because of anharmonic ground state vibrations, an ODN hydrogen bond in the triclinic form exhibits a shorter oxygen-hydron and a longer oxygen-nitrogen distance as compared to surrounding OHN hydrogen bonds, which also implies a reduction of the local dipole moment. The dipole-dipole interaction between adjacent coupled OHN hydrogen bonds which determines the structure of triclinic 4-MPPCP is then reduced by deuteration, and other interactions become dominant, leading to the monoclinic form. Finally, the observation of stronger OHN hydrogen bonds by (1)H NMR in polar solution as compared to the solid state is discussed.


Asunto(s)
Hidrocarburos Clorados/química , Pentaclorofenol/química , Picolinas/química , Piridinas/química , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Isótopos de Nitrógeno , Teoría Cuántica
16.
J Phys Chem A ; 116(46): 11180-8, 2012 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-22738093

RESUMEN

Ten formally symmetric anionic OHO hydrogen bonded complexes, modeling Asp/Glu amino acid side chain interactions in nonaqueous environment (CDF(3)/CDF(2)Cl solution, 200-110 K) have been studied by (1)H, (2)H, and (13)C NMR spectroscopy, i.e. intermolecularly H-bonded homoconjugated anions of acetic, chloroacetic, dichloroacetic, trifluoroacetic, trimethylacetic, and isobutyric acids, and intramolecularly H-bonded hydrogen succinate, hydrogen rac-dimethylsuccinate, hydrogen maleate, and hydrogen phthalate. In particular, primary H/D isotope effects on the hydrogen bond proton signals as well as secondary H/D isotope effects on the (13)C signals of the carboxylic groups are reported and analyzed. We demonstrate that in most of the studied systems there is a degenerate proton tautomerism between O-H···O(-) and O(-)···H-O structures which is fast in the NMR time scale. The stronger is the proton donating ability of the acid, the shorter and more symmetric are the H-bonds in each tautomer of the homoconjugate. For the maleate and phthalate anions exhibiting intramolecular hydrogen bonds, evidence for symmetric single well potentials is obtained. We propose a correlation between H/D isotope effects on carboxylic carbon chemical shifts and the proton transfer coordinate, q(1) = ½(r(OH) - r(HO)), which allows us to estimate the desired OHO hydrogen bond geometries from the observed (13)C NMR parameters, taking into account the degenerate proton tautomerism.


Asunto(s)
Ácidos Carboxílicos/química , Protones , Aniones/química , Isótopos de Carbono , Medición de Intercambio de Deuterio , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética/normas , Estructura Molecular , Estándares de Referencia
17.
J Am Chem Soc ; 133(20): 7897-908, 2011 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-21534587

RESUMEN

Combined low-temperature NMR/UV-vis spectroscopy (UVNMR), where optical and NMR spectra are measured in the NMR spectrometer under the same conditions, has been set up and applied to the study of H-bonded anions A··H··X(-) (AH = 1-(13)C-2-chloro-4-nitrophenol, X(-) = 15 carboxylic acid anions, 5 phenolates, Cl(-), Br(-), I(-), and BF(4)(-)). In this series, H is shifted from A to X, modeling the proton-transfer pathway. The (1)H and (13)C chemical shifts and the H/D isotope effects on the latter provide information about averaged H-bond geometries. At the same time, red shifts of the π-π* UV-vis absorption bands are observed which correlate with the averaged H-bond geometries. However, on the UV-vis time scale, different tautomeric states and solvent configurations are in slow exchange. The combined data sets indicate that the proton transfer starts with a H-bond compression and a displacement of the proton toward the H-bond center, involving single-well configurations A-H···X(-). In the strong H-bond regime, coexisting tautomers A··H···X(-) and A(-)···H··X are observed by UV. Their geometries and statistical weights change continuously when the basicity of X(-) is increased. Finally, again a series of single-well structures of the type A(-)···H-X is observed. Interestingly, the UV-vis absorption bands are broadened inhomogeneously because of a distribution of H-bond geometries arising from different solvent configurations.


Asunto(s)
Ácidos Carboxílicos/química , Espectroscopía de Resonancia Magnética/métodos , Fenoles/química , Espectrofotometría Ultravioleta/métodos , Enlace de Hidrógeno , Protones
18.
J Am Chem Soc ; 133(29): 11331-8, 2011 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-21682342

RESUMEN

Using liquid-state NMR spectroscopy we have estimated the proton-donating ability of Zn-bound water in organometallic complexes designed as models for the active site of the metalloenzyme carbonic anhydrase (CA). This ability is important for the understanding of the enzyme reaction mechanism. The desired information was obtained by (1)H and (15)N NMR at 180 K of solutions of [Tp(Ph,Me)ZnOH] [1, Tp(Ph,Me) = tris(2-methyl-4-phenylpyrazolyl)hydroborate] in CD(2)Cl(2), in the absence and presence of the proton donors (C(6)F(5))(3)BOH(2) [aquatris(pentafluorophenyl)boron] and Col-H(+) (2,4,6-trimethylpyridine-H(+)). Col-H(+) forms a strong OHN hydrogen bond with 1, where the proton is located closer to nitrogen than to oxygen. (C(6)F(5))(3)BOH(2), which exhibits a pK(a) value of 1 in water, also forms a strong hydrogen bond with 1, where the proton is shifted slightly across the hydrogen-bond center toward the Zn-bound oxygen. Finally, a complex between Col and (C(6)F(5))(3)BOH(2) was identified, exhibiting a zwitterionic OHN hydrogen bond, where H is entirely shifted to nitrogen. The comparison with complexes of Col with carboxylic acids studied previously suggests that, surprisingly, the Zn-bound water exhibits in an aprotic environment a similar proton-donating ability as a carboxylic acid characterized in water by a pK(a) of 2.2 ± 0.6. This value is much smaller than the value of 9 found for [Zn(OH(2))(6)](2+) in water and those between 5 and 8 reported for different forms of CA. Implications for the biological function of CA are discussed.


Asunto(s)
Anhidrasas Carbónicas/química , Protones , Agua/química , Zinc/química , Animales , Dominio Catalítico , Humanos , Resonancia Magnética Nuclear Biomolecular
19.
Phys Chem Chem Phys ; 13(45): 20199-207, 2011 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-21993614

RESUMEN

It is now well-known that (2)H solid-state NMR techniques can bring a better understanding of the interaction of deuterium with metal atoms in organometallic mononuclear complexes, clusters or nanoparticles. In that context, we have recently obtained experimental quadrupolar coupling constants and asymmetry parameters characteristic of deuterium atoms involved in various bonding situations in ruthenium clusters, namely D(4)Ru(4)(CO)(12), D(2)Ru(6)(CO)(18) and other related compounds [Gutmann et al., J. Am. Chem. Soc., 2010, 132, 11759], which are model compounds for edge-bridging (µ-H) and face-capping (µ(3)-H) coordination types on ruthenium surfaces. The present work is in line with density functional theory (DFT) calculations of the electric field gradient (EFG) tensors in deuterated organometallic ruthenium complexes. The comparison of quadrupolar coupling constants shows an excellent agreement between calculated and observed values. This confirms that DFT is a method of choice for the analysis of deuterium NMR spectra. Such calculations are achieved on a large number of ruthenium clusters in order to obtain quadrupolar coupling constants characteristic of a given coordination type: terminal-D, η(2)-D(2), µ-D, µ(3)-D as well as µ(4)-D and µ(6)-D (i.e. interstitial deuterides). Given the dependence of such NMR parameters mainly on local symmetry, these results are expected to remain valid for large assemblies of ruthenium atoms, such as organometallic ruthenium nanoparticles.

20.
J Phys Chem A ; 115(35): 9828-36, 2011 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-21809856

RESUMEN

We present a (1)H, (2)H, and (13)C NMR study of the monoanions of succinic (1), meso- and rac-dimethylsuccinic (2, 3), and methylsuccinic (4) acids (with tetraalkylammonium as the counterion) dissolved in CDF(3)/CDF(2)Cl at 300-120 K. In all four monoanions, the carboxylic groups are linked by a short intramolecular OHO hydrogen bond revealed by the bridging-proton chemical shift of about 20 ppm. We show that the flexibility of the carbon skeleton allows for two gauche isomers in monoanions 1, 2, and 4, interconverting through experimental energy barriers of 10-15 kcal/mol (the process itself and the energy barrier are also reproduced in MP2/6-311++G** calculations). In 3, one of the gauche forms is absent because of the steric repulsion of the methyl groups. In all four monoanions, the bridging proton is located in a double-well potential and subject, at least to some extent, to proton tautomerism, for which we estimate the two proton positions to be separated by ca. 0.2 Å. In 1 and 3, the proton potential is symmetric. In 2, slowing the conformational interconversion introduces an asymmetry to the proton potential, an effect that might be strong enough even to synchronize the proton tautomerism with the interconversion of the two gauche forms. In 4, the asymmetry of the proton potential is due to the asymmetric substitution. The intramolecular H-bond is likely to remain intact during the interconversion of the gauche forms in 1, 3, and 4, whereas the situation in 2 is less clear.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA