Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Cell ; 173(4): 906-919.e13, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29706547

RESUMEN

The innate RNA sensor RIG-I is critical in the initiation of antiviral type I interferons (IFNs) production upon recognition of "non-self" viral RNAs. Here, we identify a host-derived, IFN-inducible long noncoding RNA, lnc-Lsm3b, that can compete with viral RNAs in the binding of RIG-I monomers and feedback inactivate the RIG-I innate function at late stage of innate response. Mechanistically, binding of lnc-Lsm3b restricts RIG-I protein's conformational shift and prevents downstream signaling, thereby terminating type I IFNs production. Multivalent structural motifs and long-stem structure are critical features of lnc-Lsm3b for RIG-I binding and inhibition. These data reveal a non-canonical self-recognition mode in the regulation of immune response and demonstrate an important role of an inducible "self" lncRNA acting as a potent molecular decoy actively saturating RIG-I binding sites to restrict the duration of "non-self" RNA-induced innate immune response and maintaining immune homeostasis, with potential utility in inflammatory disease management.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Inmunidad Innata , ARN Largo no Codificante/metabolismo , Animales , Células HEK293 , Humanos , Interferón-alfa/metabolismo , Interferón beta/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Células RAW 264.7 , Interferencia de ARN , ARN Bicatenario/metabolismo , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Vesiculovirus/patogenicidad
2.
Nat Immunol ; 20(7): 812-823, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31036902

RESUMEN

The helicase RIG-I initiates an antiviral immune response after recognition of pathogenic RNA. TRIM25, an E3 ubiquitin ligase, mediates K63-linked ubiquitination of RIG-I, which is crucial for RIG-I downstream signaling and the antiviral innate immune response. The components and mode of the RIG-I-initiated innate signaling remain to be fully understood. Here we identify a novel long noncoding RNA (Lnczc3h7a) that binds to TRIM25 and promotes RIG-I-mediated antiviral innate immune responses. Depletion of Lnczc3h7a impairs RIG-I signaling and the antiviral innate response to RNA viruses in vitro and in vivo. Mechanistically, Lnczc3h7a binds to both TRIM25 and activated RIG-I, serving as a molecular scaffold for stabilization of the RIG-I-TRIM25 complex at the early stage of viral infection. Lnczc3h7a facilitates TRIM25-mediated K63-linked ubiquitination of RIG-I and thus promotes downstream signaling transduction. Our findings reveal that host RNAs can enhance the response of innate immune sensors to foreign RNAs, ensuring effective antiviral defense.


Asunto(s)
Proteína 58 DEAD Box/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/genética , ARN Largo no Codificante/genética , Factores de Transcripción/genética , Animales , Línea Celular , Humanos , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/virología , Ratones , Modelos Biológicos , Interferencia de ARN , Virus ARN/inmunología , Transducción de Señal , Virosis/genética , Virosis/inmunología , Virosis/metabolismo , Virosis/virología
3.
Anal Chem ; 96(26): 10827-10834, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38885015

RESUMEN

Kidney diseases have become an important global health concern due to their high incidence, inefficient diagnosis, and poor prognosis. Devising direct methods, especially imaging means, to assess renal function is the key for better understanding the mechanisms of various kidney diseases and subsequent development of effective treatment. Herein, we developed a fluorinated ferrous chelate-based sensitive probe, 1,7-DO2A-Fe(II)-F18 (Probe 1), for 19F magnetic resonance imaging (MRI). This highly fluorinated probe (containing 18 chemically equivalent 19F atoms with a fluorine content at 35 wt %) achieves a 15-time enhancement in signal intensity compared with the fluorine-containing ligand alone due to the appropriately regulated 19F relaxation times by the ferrous ion, which significantly increases imaging sensitivity and reduces acquisition time. Owing to its high aqueous solubility, biostability, and biocompatibility, this probe could be rapidly cleared by kidneys, which provides a means for monitoring renal dysfunction via 19F MRI. With this probe, we accomplish in vivo imaging of the impaired renal dysfunction caused by various kidney diseases including acute kidney injury, unilateral ureteral obstruction, and renal fibrosis at different stages. Our study illustrates the promising potential of Probe 1 for in vivo real-time visualization of kidney dysfunction, which is beneficial for the study, diagnosis, and even stratification of different kidney diseases. Furthermore, the design strategy of our probe is inspiring for the development of more high-performance 19F MRI probes for monitoring various biological processes.


Asunto(s)
Halogenación , Animales , Ratones , Sondas Moleculares/química , Riñón/diagnóstico por imagen , Riñón/patología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Compuestos Ferrosos/química , Imagen por Resonancia Magnética , Enfermedades Renales/diagnóstico por imagen , Imagen por Resonancia Magnética con Fluor-19/métodos , Flúor/química
4.
Chem Soc Rev ; 52(3): 1129-1154, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36722920

RESUMEN

Two-dimensional metallacycles and three-dimensional metallacages constructed by coordination-driven self-assembly have attracted much attention because they exhibit unique structures and properties and are highly efficient to synthesize. Introduction of switching into supramolecular chemistry systems is a popular strategy, as switching can endow systems with reversible features that are triggered by different stimuli. Through this strategy, novel switchable metallacycles and metallacages were generated, which can be reversibly switched into different stable states with distinct characteristics by external stimuli. Switchable metallacycles and metallacages exhibit versatile structures and reversible properties and are inherently dynamic and respond to artificial signals; thus, these structures have many promising applications in a wide range of fields, such as drug delivery, data processing, pollutant removal, switchable catalysis, smart functional materials, etc. This review focuses on the design of switchable metallacycles and metallacages, their switching behaviours and mechanisms triggered by external stimuli, and the corresponding structural changes and resultant properties and functions.

5.
Nano Lett ; 23(24): 11989-11998, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38064383

RESUMEN

Due to their appealing physiochemical properties, metal-organic frameworks (MOFs) have been widely employed in biomedical fields. In this study, we utilize ferric ions and fluorine-containing organic ligands as both structural and functional units to develop a stimulus-responsive nanoagent, 19FIMOF-TA nanoparticles, for activatable 19F magnetic resonance imaging (MRI) and synergistic therapy of tumors. This nanoagent could respond to excess GSH in a tumor microenvironment, discharging fluorinated organic ligands and reduced ferrous ions. The release of these fluorine-containing small molecules results in boosting of the 19F MRI signals, which could be further enhanced by the photothermal effect of this nanoagent to achieve a responsive cascaded amplification of 19F MRI signals for tumor visualization. Meanwhile, ferroptosis promoted by the ferrous ions leads to significant tumor cell death, which is synergistically aggravated by the photothermal effect. The encouraging results illustrate the promising potential of our nanoagent for effective tumor imaging and combinative cancer therapy.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Neoplasias , Humanos , Estructuras Metalorgánicas/uso terapéutico , Estructuras Metalorgánicas/química , Flúor/química , Hierro , Imagen por Resonancia Magnética/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Neoplasias/patología , Nanopartículas/química , Iones , Línea Celular Tumoral , Microambiente Tumoral
6.
Immunol Rev ; 297(1): 162-173, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32564422

RESUMEN

Innate sensors recognize pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) to initiate innate immune response by activating downstream signaling. These evolutionarily conserved innate sensors usually locate in the plasma membrane or cytoplasm. However, the nucleus-localized innate sensors are recently found to detect pathogenic nucleic acids for initiating innate response, demonstrating a complicated crosstalk with cytoplasmic sensors and signaling molecules to form an elaborate tiered innate signaling network between nucleus and cytoplasm. Furthermore, these nuclear innate sensors evolve varied mechanisms for discriminating self from non-self nucleic acids to maintain immune homeostasis and avoid autoinflammatory immune response. In this review, we summarize the recent findings on the identification of nuclear innate sensors for nucleic acids, such as hnRNPA2B1, IFI16, SAFA, and their roles in host defense and inflammatory response.


Asunto(s)
Ácidos Nucleicos , Humanos , Inmunidad Innata , Inflamación , Moléculas de Patrón Molecular Asociado a Patógenos , Transducción de Señal
7.
J Transl Med ; 21(1): 204, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932403

RESUMEN

BACKGROUND: Endometrial cancer (EC) is one of the most common gynecological malignancies globally, and the development of innovative, effective drugs against EC remains a key issue. Phytoestrogen kaempferol exhibits anti-cancer effects, but the action mechanisms are still unclear. METHOD: MTT assays, colony-forming assays, flow cytometry, scratch healing, and transwell assays were used to evaluate the proliferation, apoptosis, cell cycle, migration, and invasion of both ER-subtype EC cells. Xenograft experiments were used to assess the effects of kaempferol inhibition on tumor growth. Next-generation RNA sequencing was used to compare the gene expression levels in vehicle-treated versus kaempferol-treated Ishikawa and HEC-1-A cells. A network pharmacology and molecular docking technique were applied to identify the anti-cancer mechanism of kaempferol, including the building of target-pathway network. GO analysis and KEGG pathway enrichment analysis were used to identify cancer-related targets. Finally, the study validated the mRNA and protein expression using real-time quantitative PCR, western blotting, and immunohistochemical analysis. RESULTS: Kaempferol was found to suppress the proliferation, promote apoptosis, and limit the tumor-forming, scratch healing, invasion, and migration capacities of EC cells. Kaempferol inhibited tumor growth and promotes apoptosis in a human endometrial cancer xenograft mouse model. No significant toxicity of kaempferol was found in human monocytes and normal cell lines at non-cytotoxic concentrations. No adverse effects or significant changes in body weight or organ coefficients were observed in 3-7 weeks' kaempferol-treated animals. The RNA sequencing, network pharmacology, and molecular docking approaches identified the overall survival-related differentially expressed gene HSD17B1. Interestingly, kaempferol upregulated HSD17B1 expression and sensitivity in ER-negative EC cells. Kaempferol differentially regulated PPARG expression in EC cells of different ER subtypes, independent of its effect on ESR1. HSD17B1 and HSD17B1-associated genes, such as ESR1, ESRRA, PPARG, AKT1, and AKR1C1\2\3, were involved in several estrogen metabolism pathways, such as steroid binding, 17-beta-hydroxysteroid dehydrogenase (NADP+) activity, steroid hormone biosynthesis, and regulation of hormone levels. The molecular basis of the effects of kaempferol treatment was evaluated. CONCLUSIONS: Kaempferol is a novel therapeutic candidate for EC via HSD17B1-related estrogen metabolism pathways. These results provide new insights into the efficiency of the medical translation of phytoestrogens.


Asunto(s)
Neoplasias Endometriales , Estradiol Deshidrogenasas , Quempferoles , Farmacología en Red , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Estrógenos/metabolismo , Quempferoles/farmacología , Simulación del Acoplamiento Molecular , PPAR gamma/metabolismo , Esteroides/metabolismo , Estradiol Deshidrogenasas/metabolismo
8.
Bioconjug Chem ; 34(7): 1316-1326, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37330989

RESUMEN

Inflammation-related diseases affect large populations of people in the world and cause substantial healthcare burdens, which results in significant costs in time, material, and labor. Preventing or relieving uncontrolled inflammation is critical for the treatment of these diseases. Herein, we report a new strategy for alleviating inflammation by macrophage reprogramming via targeted reactive oxygen species (ROS) scavenging and cyclooxygenase-2 (COX-2) downregulation. As a proof of concept, we synthesize a multifunctional compound named MCI containing a mannose-based macrophage targeting moiety, an indomethacin (IMC)-based segment for inhibiting COX-2, and a caffeic acid (CAF)-based section for ROS clearance. As revealed by a series of in vitro experiments, MCI could significantly attenuate the expression of COX-2 and the level of ROS, leading to M1 to M2 macrophage reprogramming, as evidenced by the reduction and the elevation in the levels of pro-inflammatory M1 markers and anti-inflammatory M2 markers, respectively. Furthermore, in vivo experiments show MCI's promising therapeutic effects on rheumatoid arthritis (RA). Our work illustrates the success of targeted macrophage reprogramming for inflammation alleviation, which sheds light on the development of new anti-inflammatory drugs.


Asunto(s)
Inflamación , Macrófagos , Humanos , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Abajo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
9.
Addict Biol ; 28(10): e13325, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37753563

RESUMEN

Relapse to oxycodone seeking progressively increases after abstinence in rats, a phenomenon termed incubation of oxycodone craving. We have previously shown that the orbitofrontal cortex (OFC) plays a critical role in incubation of oxycodone craving in male rats. Here, we examined the effect of oestrous cycle on incubated oxycodone seeking in female rats, and whether the critical role of OFC in incubated oxycodone seeking generalizes to female rats. We first assessed oxycodone self-administration and incubated oxycodone seeking on abstinence day 15 across the oestrous cycle. Next, we determined the effect of chemogenetic inactivation of OFC by JHU37160 (J60), a novel agonist for Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), on incubated oxycodone seeking on abstinence day 15. Finally, we determined the effect of J60 alone on incubated oxycodone seeking on abstinence day 15. We found no difference in oxycodone intake across oestrus, pro-oestrus, and metoestrus stages during oxycodone self-administration training. Incubated oxycodone seeking was also similar between nonoestrus and oestrus female rats. Moreover, chemogenetic inactivation of OFC by J60 decreased incubated oxycodone seeking on abstinence day 15, while J60 alone had no effect on incubated oxycodone seeking in no-DREADD control rats. Taken together, results here show that the oestrous cycle has no effect on oxycodone intake and incubated oxycodone seeking in female rats under our experimental conditions. Furthermore, consistent with our previous findings in male rats, results here show that OFC also plays a critical role in incubated oxycodone seeking in female rats.


Asunto(s)
Oxicodona , Corteza Prefrontal , Ratas , Animales , Masculino , Femenino , Ratas Sprague-Dawley , Oxicodona/farmacología , Autoadministración , Comportamiento de Búsqueda de Drogas
10.
Am J Emerg Med ; 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38155031

RESUMEN

BACKGROUND: Homocysteine (Hcy) is widely recognized as a significant risk factor for cardiovascular and cerebrovascular diseases. However, our research has uncovered a novel perspective, suggesting that elevated levels of Hcy could serve as an indicator for neurological diseases. This article presents a unique case of Subacute Combined Degeneration of the spinal cord(SCD), characterized by high homocysteine levels, yet normal vitamin B12 and imaging results. This discovery could facilitate early detection and ensure timely referral of patients to specialized departments for further treatment.

11.
Nano Lett ; 22(8): 3219-3227, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35380442

RESUMEN

The unsatisfactory performance of current gadolinium chelate based T1 contrast agents (CAs) for magnetic resonance imaging (MRI) stimulates the search for better alternatives. Herein, we report a new strategy to substantially improve the capacity of nanoparticle-based T1 CAs by exploiting the photoinduced superhydrophilic assistance (PISA) effect. As a proof of concept, we synthesized citrate-coated Gd-doped TiO2 ellipsoidal nanoparticles (GdTi-SC NPs), whose r1 increases significantly upon UV irradiation. The reduced water contact angle and the increased number of surface hydroxyl groups substantiate the existence of the PISA effect, which considerably promotes the efficiency of paramagnetic relaxation enhancement (PRE) and thus the imaging performance of GdTi-SC NPs. In vivo MRI of SD rats with GdTi-SC NPs further demonstrates that GdTi-SC NPs could serve as a high-performance CA for sensitive imaging of blood vessels and accurate diagnosis of vascular lesions, indicating the success of our strategy.


Asunto(s)
Gadolinio , Nanopartículas , Animales , Medios de Contraste/farmacología , Imagen por Resonancia Magnética/métodos , Ratas , Ratas Sprague-Dawley , Titanio
12.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36902124

RESUMEN

Acrylamide (AA) is a food processing contaminant commonly found in fried and baked food products. In this study, the potential synergistic effect of probiotic formulas in reducing AA was studied. Five selected probiotic strains (Lactiplantibacillus plantarum subsp. plantarum ATCC14917 (L. Pl.), Lactobacillus delbrueckii subsp. bulgaricus ATCC11842 (L. B.), Lacticaseibacillus paracasei subsp. paracasei ATCC25302 (L. Pa), Streptococcus thermophilus ATCC19258, and Bifidobacterium longum subsp. longum ATCC15707) were selected for investigating their AA reducing capacity. It was found that L. Pl. (108 CFU/mL) showed the highest AA reduction percentage (43-51%) when exposed to different concentrations of AA standard chemical solutions (350, 750, and 1250 ng/mL). The potential synergistic effect of probiotic formulas was also examined. The result demonstrated a synergistic AA reduction effect by the probiotic formula: L. Pl. + L. B., which also showed the highest AA reduction ability among the tested formulas. A further study was conducted by incubating selected probiotic formulas with potato chips and biscuit samples followed by an in vitro digestion model. The findings demonstrated a similar trend in AA reduction ability as those found in the chemical solution. This study firstly indicated the synergistic effect of probiotic formulas on AA reduction and its effect was also highly strain-dependent.


Asunto(s)
Lactobacillus delbrueckii , Probióticos , Acrilamida , Lactobacillus
13.
Angew Chem Int Ed Engl ; 62(50): e202313753, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37899303

RESUMEN

The abnormality in the glycosylation of surface proteins is critical for the growth and metastasis of tumors and their capacity for immunosuppression and drug resistance. This anomaly offers an entry point for real-time analysis on glycosylation fluctuations. In this study, we report a strategy, glycan metabolic fluorine labeling (MEFLA), for selectively tagging glycans of tumor cells. As a proof of concept, we synthesized two fluorinated unnatural monosaccharides with distinctive 19 F chemical shifts (Ac4 ManNTfe and Ac4 GalNTfa). These two probes could undergo selective uptake by tumor cells and subsequent incorporation into surface glycans. This approach enables efficient and specific 19 F labeling of tumor cells, which permits in vivo tracking of tumor cells and in situ assessment of glycosylation changes by 19 F MRI. The efficiency and specificity of our probes for labeling tumor cells were verified in vitro with A549 cells. The feasibility of our method was further validated with in vivo experiments on A549 tumor-bearing mice. Moreover, the capacity of our approach for assessing glycosylation changes of tumor cells was illustrated both in vitro and in vivo. Our studies provide a promising means for visualizing tumor cells in vivo and assessing their glycosylation variations in situ through targeted multiplexed 19 F MRI.


Asunto(s)
Flúor , Monosacáridos , Animales , Ratones , Glicosilación , Monosacáridos/metabolismo , Polisacáridos/metabolismo
14.
Angew Chem Int Ed Engl ; 62(27): e202301900, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-36959097

RESUMEN

Developing a new strategy to improve the self-assembly efficiency of functional assemblies in a confined space and construct hybrid functional materials is a significant and fascinating endeavor. Herein, we present a highly efficient strategy for achieving the supramolecular self-assembly of well-defined metallacages in microdroplets through continuous-flow microfluidic devices. The high efficiency and versatility of this approach are demonstrated by the generation of five representative metallacages in different solvents containing water, DMF, acetonitrile, and methanol in a few minutes with nearly quantitative yields, in contrast to the yields obtained with the hour-scale reaction time in a batch reactor. A ring-opening catalytic reaction of the metallacages was selected as a model reaction for exploring supramolecular catalysis in microdroplets, whereby the catalytic yield was enhanced by 2.22-fold compared to that of the same reaction in the batch reactor. This work illustrates a new promising approach for the self-assembly of supramolecular systems.

15.
J Am Chem Soc ; 144(11): 4977-4988, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35274938

RESUMEN

Electron/proton transfers in water proceeding from ground/excited states are the elementary reactions of chemistry. These reactions of an iconic class of molecules─polypyridineRu(II)─are now controlled by capturing or releasing three of them with hosts that are shape-switchable. Reversible erection or collapse of the host walls allows such switchability. Some reaction rates are suppressed by factors of up to 120 by inclusive binding of the metal complexes. This puts nanometric coordination chemistry in a box that can be open or shut as necessary. Such second-sphere complexation can allow considerable control to be exerted on photocatalysis, electrocatalysis, and luminescent sensing involving polypyridineRu(II) compounds. The capturing states of hosts are symmetry-matched to guests for selective binding and display submicromolar affinities. A perching complex, which is an intermediate state between capturing and releasing states, is also demonstrated.


Asunto(s)
Complejos de Coordinación , Compuestos Heterocíclicos , Rutenio , 2,2'-Dipiridil/química , Complejos de Coordinación/química , Rutenio/química , Agua
16.
Anal Chem ; 94(48): 16614-16621, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36398367

RESUMEN

The high resolution, deep penetration, and negligible biological background of 19F magnetic resonance imaging (MRI) makes it a potential means for imaging various biological targets in vivo. However, the limited targeting strategies of current 19F MRI probes significantly restrict their applications for in vivo tracking of low-abundance targets and specific biological processes, which greatly stimulates the investigations on new targeting methods for 19F MRI. Herein, we report a strategy, termed as bio-orthogonal metabolic fluorine labeling, for selective cellular 19F labeling, which permits in vivo imaging of tumor cells with high specificity. This strategy exploits the display of azido groups on the cell surface via selective uptake and metabolic engineering of tetra-acetylated N-azidoacetylmannosamine (Ac4ManAz) by cancer cells and subsequent rapid and specific bio-orthogonal ligation between azido and cyclootynyl groups to incorporate 19F-containing moieties on the surface of cancer cells. We validated the feasibility of this method on the cellular level with A549 and HepG2 cells and further illustrated the application of this method for in vivo deep-tissue visualization of cancer cells with A549 tumor-bearing BALB/c mice using hot spot 19F MRI. Our strategy expands the arsenal for targeted 19F MRI and provides a promising method for imaging biological targets in living subjects with high tissue penetration and low biological background.


Asunto(s)
Flúor , Neoplasias , Animales , Ratones , Imagen por Resonancia Magnética , Ratones Endogámicos BALB C , Neoplasias/diagnóstico por imagen , Fluoruros
17.
Molecules ; 27(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36500662

RESUMEN

A novel pectic polysaccharide (HPP-1) with high immunomodulatory activity was extracted and isolated from the immature honey pomelo fruit (Citrus grandis). Characterization of its chemical structure indicated that HPP-1 had a molecular weight of 59,024 D. In addition, HPP-1 was primarily composed of rhamnose, arabinose, fucose, mannose, and galactose at a molar ratio of 1.00:11.12:2.26:0.56:6.40. Fourier-transform infrared spectroscopy, periodic acid oxidation, and Smith degradation results showed that HPP-1 had α- and ß-glycosidic linkages and 1 → 2, 1 → 4, 1 → 6, and 1 → 3 glycosidic bonds. 13C NMR and 1H NMR analyses revealed that the main glycogroups included 1,4-D-GalA, 1,6-ß-D-Gal, 1,6-ß-D-Man, 1,3-α-L-Ara, and 1,2-α-L-Rha. Immunomodulatory bioactivity analysis using a macrophage RAW264.7 model in vitro revealed that NO, TNF-α, and IL-6 secretions were all considerably increased by HPP-1. Moreover, RT-PCR results showed that HPP-1-induced iNOS, TNF-α, and IL-6 expression was significantly increased in macrophages. HPP-1-mediated activation in macrophages was due to the stimulation of the NF-κB and MAPK signaling pathways based on western blot analyses. HPP-1 extracted from immature honey pomelo fruit has potential applications as an immunomodulatory supplement.


Asunto(s)
Frutas , Pectinas , Ratones , Animales , Pectinas/farmacología , Pectinas/análisis , Frutas/química , Factor de Necrosis Tumoral alfa/metabolismo , Células RAW 264.7 , Interleucina-6/metabolismo , Factores Inmunológicos/química , Polisacáridos/química
18.
Angew Chem Int Ed Engl ; 61(46): e202211189, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36121097

RESUMEN

Simultaneous detection of multiple biomarkers in complex environments is critical for the in-depth exploration of different biological processes, which is challenging for many current analytical methods due to various limitations. Herein, we report a strategy of 19 F barcoding which takes the advantages of 19 F's high magnetic resonance (MR) sensitivity, prompt signal response to environmental changes, negligible biological background, quantitative signal output, and multiplex capacity. A set of 19 F-barcoded sensors responding to different biomarkers involved in organ injury and cancer are designed, synthesized, and characterized. With these sensors, we accomplish concurrent assessment of different biomarkers in the samples collected from the mice with drug-induced liver/kidney injury or tumor, illustrating the feasibility of this approach for multiplexed detection of different biomarkers in complex environments during various biological processes.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Neoplasias , Ratones , Animales , Biomarcadores , Espectroscopía de Resonancia Magnética , Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen , Neoplasias/genética
19.
Anal Chem ; 93(49): 16552-16561, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34859996

RESUMEN

In vivo levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are critical to many physiological and pathological processes. Because of the distinct differences in their biological generation and effects, simultaneously visualizing both of them could help deepen our insights into the mechanistic details of these processes. However, real-time and deep-tissue imaging and differentiation of ROS- and RNS-related molecular events in living subjects still remain a challenge. Here, we report the development of two activatable 19F magnetic resonance imaging (MRI) molecular probes with different 19F chemical shifts and specific responsive behaviors for simultaneous in vivo detection and deep-tissue imaging of O2•- and ONOO-. These probes are capable of real-time visualization and differentiation of O2•- and ONOO- in living mice with drug-induced acute kidney injury by interference-free multiplexed hot-spot 19F MRI, illustrating the potential of this technique for background-free real-time imaging of diverse biological processes, accurate diagnosis of various diseases in deep tissues, and rapid toxicity evaluation of assorted drugs.


Asunto(s)
Lesión Renal Aguda , Preparaciones Farmacéuticas , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/diagnóstico por imagen , Animales , Imagen por Resonancia Magnética , Ratones , Nitrógeno , Oxígeno
20.
Bioconjug Chem ; 32(5): 983-990, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33847488

RESUMEN

The overexpression of HIF-1α in solid tumors due to hypoxia is closely related to drug resistance and consequent treatment failure. Herein, we constructed a hypoxia-activated prodrug named as YC-Dox. This prodrug could be activated under hypoxic conditions and undergo self-immolation to release doxorubicin (Dox) and YC-1 hemisuccinate (YCH-1), which could execute chemotherapy and result in HIF-1α downregulation, respectively. This prodrug is capable of specifically releasing Dox and YCH-1 in response to hypoxia, leading to a substantial synergistic potency and a remarkable cytotoxic selectivity (>8-fold) for hypoxic cancer cells over normoxic healthy cells. The in vivo experiments reveal that this prodrug can selectively aim at hypoxic cancer cells and avoid undesired targeting of normal cells, leading to elevated therapeutic efficacy for tumor treatment and minimized adverse effects on normal tissues.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Profármacos/metabolismo , Hipoxia Tumoral/efectos de los fármacos , Línea Celular Tumoral , Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Humanos , Indazoles/metabolismo , Indazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA