Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Rep ; 43(3): 61, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38336900

RESUMEN

KEY MESSAGE: TALE-based editors provide an alternative way to engineer the organellar genomes in plants. We update and discuss the most recent developments of TALE-based organellar genome editing in plants. Gene editing tools have been widely used to modify the nuclear genomes of plants for various basic research and biotechnological applications. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 editing platform is the most commonly used technique because of its ease of use, fast speed, and low cost; however, it encounters difficulty when being delivered to plant organelles for gene editing. In contrast, protein-based editing technologies, such as transcription activator-like effector (TALE)-based tools, could be easily delivered, expressed, and targeted to organelles in plants via Agrobacteria-mediated nuclear transformation. Therefore, TALE-based editors provide an alternative way to engineer the organellar genomes in plants since the conventional chloroplast transformation method encounters technical challenges and is limited to certain species, and the direct transformation of mitochondria in higher plants is not yet possible. In this review, we update and discuss the most recent developments of TALE-based organellar genome editing in plants.


Asunto(s)
Edición Génica , Efectores Tipo Activadores de la Transcripción , Edición Génica/métodos , Efectores Tipo Activadores de la Transcripción/genética , Sistemas CRISPR-Cas/genética , Plantas/genética , Orgánulos/genética , Expresión Génica , Genoma de Planta/genética
2.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33536344

RESUMEN

An important question is what genes govern the differentiation of plant embryos into suspensor and embryo proper regions following fertilization and division of the zygote. We compared embryo proper and suspensor transcriptomes of four plants that vary in embryo morphology within the suspensor region. We determined that genes encoding enzymes in several metabolic pathways leading to the formation of hormones, such as gibberellic acid, and other metabolites are up-regulated in giant scarlet runner bean and common bean suspensors. Genes involved in transport and Golgi body organization are up-regulated within the suspensors of these plants as well, strengthening the view that giant specialized suspensors serve as a hormone factory and a conduit for transferring substances to the developing embryo proper. By contrast, genes controlling transcriptional regulation, development, and cell division are up-regulated primarily within the embryo proper. Transcriptomes from less specialized soybean and Arabidopsis suspensors demonstrated that fewer genes encoding metabolic enzymes and hormones are up-regulated. Genes active in the embryo proper, however, are functionally similar to those active in scarlet runner bean and common bean embryo proper regions. We uncovered a set of suspensor- and embryo proper-specific transcription factors (TFs) that are shared by all embryos irrespective of morphology, suggesting that they are involved in early differentiation processes common to all plants. Chromatin immunoprecipitation sequencing (ChIP-Seq) experiments with scarlet runner bean and soybean WOX9, an up-regulated suspensor TF, gained entry into a regulatory network important for suspensor development irrespective of morphology.


Asunto(s)
Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Semillas/genética , Transcriptoma/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , División Celular/genética , Regulación de la Expresión Génica de las Plantas/genética , Giberelinas/metabolismo , Semillas/metabolismo , Glycine max/genética , Glycine max/crecimiento & desarrollo
3.
Proc Natl Acad Sci U S A ; 115(35): E8315-E8322, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30104383

RESUMEN

The precise mechanisms that control gene activity during seed development remain largely unknown. Previously, we showed that several genes essential for seed development, including those encoding storage proteins, fatty acid biosynthesis enzymes, and transcriptional regulators (e.g., ABI3, FUS3) are located within hypomethylated regions of the soybean genome. These hypomethylated regions are similar to the DNA methylation valleys (DMVs), or canyons, found in mammalian cells. Here, we address the question of the extent to which DMVs are present within seed genomes and what role they might play in seed development. We scanned soybean and Arabidopsis seed genomes from postfertilization through dormancy and germination for regions that contain <5% or <0.4% bulk methylation in CG, CHG, and CHH contexts over all developmental stages. We found that DMVs represent extensive portions of seed genomes, range in size from 5-76 kb, are scattered throughout all chromosomes, and are hypomethylated throughout the plant life cycle. Significantly, DMVs are enriched greatly in transcription factor (TF) genes and other developmental genes that play critical roles in seed formation. Many DMV genes are regulated with respect to seed stage, region, and tissue, and contain H3K4me3, H3K27me3, or bivalent marks that fluctuate during development. Our results indicate that DMVs are a unique regulatory feature of both plant and animal genomes, and that a large number of seed genes are regulated in the absence of methylation changes during development, probably by the action of specific TFs and epigenetic events at the chromatin level.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Metilación de ADN/fisiología , ADN de Plantas , Genoma de Planta/fisiología , Glycine max , Semillas , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN de Plantas/genética , ADN de Plantas/metabolismo , Epigénesis Genética/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Semillas/genética , Semillas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(45): E9730-E9739, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078418

RESUMEN

We profiled soybean and Arabidopsis methylomes from the globular stage through dormancy and germination to understand the role of methylation in seed formation. CHH methylation increases significantly during development throughout the entire seed, targets primarily transposable elements (TEs), is maintained during endoreduplication, and drops precipitously within the germinating seedling. By contrast, no significant global changes in CG- and CHG-context methylation occur during the same developmental period. An Arabidopsis ddcc mutant lacking CHH and CHG methylation does not affect seed development, germination, or major patterns of gene expression, implying that CHH and CHG methylation does not play a significant role in seed development or in regulating seed gene activity. By contrast, over 100 TEs are transcriptionally de-repressed in ddcc seeds, suggesting that the increase in CHH-context methylation may be a failsafe mechanism to reinforce transposon silencing. Many genes encoding important classes of seed proteins, such as storage proteins, oil biosynthesis enzymes, and transcription factors, reside in genomic regions devoid of methylation at any stage of seed development. Many other genes in these classes have similar methylation patterns, whether the genes are active or repressed. Our results suggest that methylation does not play a significant role in regulating large numbers of genes important for programming seed development in both soybean and Arabidopsis. We conclude that understanding the mechanisms controlling seed development will require determining how cis-regulatory elements and their cognate transcription factors are organized in genetic regulatory networks.


Asunto(s)
Arabidopsis/genética , Metilación de ADN/fisiología , ADN de Plantas/metabolismo , Glycine max/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Secuencia de Bases , Metilación de ADN/genética , Elementos Transponibles de ADN/genética , Elementos Transponibles de ADN/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes , Silenciador del Gen , Genes de Plantas/genética , Genoma de Planta/genética , Germinación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Plantones/genética , Plantones/metabolismo , Semillas/citología
5.
Chromosome Res ; 24(2): 197-216, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26758200

RESUMEN

Cowpea (Vigna unguiculata (L.) Walp) is an important legume, particularly in developing countries. However, little is known about its genome or chromosome structure. We used molecular cytogenetics to characterize the structure of pachytene chromosomes to advance our knowledge of chromosome and genome organization of cowpea. Our data showed that cowpea has highly distinct chromosomal structures that are cytologically visible as brightly DAPI-stained heterochromatic regions. Analysis of the repetitive fraction of the cowpea genome present at centromeric and pericentromeric regions confirmed that two retrotransposons are major components of pericentromeric regions and that a 455-bp tandem repeat is found at seven out of 11 centromere pairs in cowpea. These repeats likely evolved after the divergence of cowpea from common bean and form chromosomal structure unique to cowpea. The integration of cowpea genetic and physical chromosome maps reveals potential regions of suppressed recombination due to condensed heterochromatin and a lack of pairing in a few chromosomal termini. This study provides fundamental knowledge on cowpea chromosome structure and molecular cytogenetics tools for further chromosome studies.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Análisis Citogenético/métodos , Fase Paquiteno/genética , Mapeo Físico de Cromosoma , Vigna/genética , 5-Metilcitosina/análisis , Centrómero/genética , Genoma de Planta , Hibridación Fluorescente in Situ , Meiosis/genética , Mitosis/genética , Retroelementos/genética , Secuencias Repetidas en Tándem/genética
6.
Microb Ecol ; 70(3): 677-88, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25851446

RESUMEN

The aim of this study was to elucidate how flooding of the Changjiang River affects the assemblage composition of phycoerythrin-rich (PE-rich) Synechococcus at the surface of the East China Sea (ECS). During non-flooding summers (e.g., 2009), PE-rich Synechococcus usually thrive at the outer edge of the Changjiang River diluted water coverage (CDW; salinity ≤31 PSU). In the summer of 2010, a severe flood occurred in the Changjiang River basin. The plentiful freshwater injection resulted in the expansion of the CDW over half of the ECS and caused PE-rich cells to show a uniform distribution pattern, with decreased abundance compared with the non-flooding summer. The phylogenetic diversity of 16S rRNA gene sequences indicated that the flooding event also shifted the picoplankton community composition from being dominated by Synechococcus, mainly attributed to the clade II lineage, to various orders of heterotrophic bacteria, including Actinobacteria, Flavobacteria, α-Proteobacteria, and γ-Proteobacteria. As an increasing number of studies have proposed that global warming might result in more frequent floods, combining this perspective with the information obtained from our previous [1] and this studies yield a more comprehensive understanding of the relationship between the composition of the marine Synechococcus assemblage and global environmental changes.


Asunto(s)
Inundaciones , Microbiota , Synechococcus/fisiología , China , ADN Bacteriano/genética , Datos de Secuencia Molecular , Océano Pacífico , Ficoeritrina/metabolismo , ARN Ribosómico 16S/genética , Estaciones del Año , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Synechococcus/genética
7.
Plant Cell ; 22(8): 2545-61, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20729383

RESUMEN

Soybean (Glycine max) has undergone at least two rounds of polyploidization, resulting in a paleopolyploid genome that is a mosaic of homoeologous regions. To determine the structural and functional impact of these duplications, we sequenced two ~1-Mb homoeologous regions of soybean, Gm8 and Gm15, derived from the most recent ~13 million year duplication event and the orthologous region from common bean (Phaseolus vulgaris), Pv5. We observed inversions leading to major structural variation and a bias between the two chromosome segments as Gm15 experienced more gene movement (gene retention rate of 81% in Gm15 versus 91% in Gm8) and a nearly twofold increase in the deletion of long terminal repeat (LTR) retrotransposons via solo LTR formation. Functional analyses of Gm15 and Gm8 revealed decreases in gene expression and synonymous substitution rates for Gm15, for instance, a 38% increase in transcript levels from Gm8 relative to Gm15. Transcriptional divergence of homoeologs was found based on expression patterns among seven tissues and developmental stages. Our results indicate asymmetric evolution between homoeologous regions of soybean as evidenced by structural changes and expression variances of homoeologous genes.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Glycine max/genética , Phaseolus , Cromosomas Artificiales Bacterianos , Elementos Transponibles de ADN , ADN de Plantas/genética , Genoma de Planta , Hibridación Fluorescente in Situ , Análisis de Secuencia por Matrices de Oligonucleótidos , Phaseolus/genética , Polimorfismo de Longitud del Fragmento de Restricción , Polimorfismo de Nucleótido Simple , Retroelementos , Análisis de Secuencia de ADN
8.
BMC Genomics ; 8: 330, 2007 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-17880721

RESUMEN

BACKGROUND: Soybean, Glycine max (L.) Merr., is a well documented paleopolyploid. What remains relatively under characterized is the level of sequence identity in retained homeologous regions of the genome. Recently, the Department of Energy Joint Genome Institute and United States Department of Agriculture jointly announced the sequencing of the soybean genome. One of the initial concerns is to what extent sequence identity in homeologous regions would have on whole genome shotgun sequence assembly. RESULTS: Seventeen BACs representing approximately 2.03 Mb were sequenced as representative potential homeologous regions from the soybean genome. Genetic mapping of each BAC shows that 11 of the 20 chromosomes are represented. Sequence comparisons between homeologous BACs shows that the soybean genome is a mosaic of retained paleopolyploid regions. Some regions appear to be highly conserved while other regions have diverged significantly. Large-scale "batch" reassembly of all 17 BACs combined showed that even the most homeologous BACs with upwards of 95% sequence identity resolve into their respective homeologous sequences. Potential assembly errors were generated by tandemly duplicated pentatricopeptide repeat containing genes and long simple sequence repeats. Analysis of a whole-genome shotgun assembly of 80,000 randomly chosen JGI-DOE sequence traces reveals some new soybean-specific repeat sequences. CONCLUSION: This analysis investigated both the structure of the paleopolyploid soybean genome and the potential effects retained homeology will have on assembling the whole genome shotgun sequence. Based upon these results, homeologous regions similar to those characterized here will not cause major assembly issues.


Asunto(s)
Genes Duplicados/genética , Genoma de Planta/genética , Glycine max/genética , Mapeo Físico de Cromosoma/métodos , Poliploidía , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN/métodos , Secuencia de Bases/genética , Cromosomas Artificiales Bacterianos/genética , Cromosomas de las Plantas/genética , Evolución Molecular , Marcadores Genéticos , Repeticiones de Microsatélite , Filogenia , Polimorfismo Genético/genética , Programas Informáticos , Especificidad de la Especie , Sintenía/genética
9.
BMC Genomics ; 7: 199, 2006 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-16895597

RESUMEN

BACKGROUND: With the completion of the genome sequence for rice (Oryza sativa L.), the focus of rice genomics research has shifted to the comparison of the rice genome with genomes of other species for gene cloning, breeding, and evolutionary studies. The genus Oryza includes 23 species that shared a common ancestor 8-10 million years ago making this an ideal model for investigations into the processes underlying domestication, as many of the Oryza species are still undergoing domestication. This study integrates high-throughput, hybridization-based markers with BAC end sequence and fingerprint data to construct physical maps of rice chromosome 1 orthologues in two wild Oryza species. Similar studies were undertaken in Sorghum bicolor, a species which diverged from cultivated rice 40-50 million years ago. RESULTS: Overgo markers, in conjunction with fingerprint and BAC end sequence data, were used to build sequence-ready BAC contigs for two wild Oryza species. The markers drove contig merges to construct physical maps syntenic to rice chromosome 1 in the wild species and provided evidence for at least one rearrangement on chromosome 1 of the O. sativa versus Oryza officinalis comparative map. When rice overgos were aligned to available S. bicolor sequence, 29% of the overgos aligned with three or fewer mismatches; of these, 41% gave positive hybridization signals. Overgo hybridization patterns supported colinearity of loci in regions of sorghum chromosome 3 and rice chromosome 1 and suggested that a possible genomic inversion occurred in this syntenic region in one of the two genomes after the divergence of S. bicolor and O. sativa. CONCLUSION: The results of this study emphasize the importance of identifying conserved sequences in the reference sequence when designing overgo probes in order for those probes to hybridize successfully in distantly related species. As interspecific markers, overgos can be used successfully to construct physical maps in species which diverged less than 8 million years ago, and can be used in a more limited fashion to examine colinearity among species which diverged as much as 40 million years ago. Additionally, overgos are able to provide evidence of genomic rearrangements in comparative physical mapping studies.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Sondas de ADN , Marcadores Genéticos , Genoma de Planta , Hibridación de Ácido Nucleico , Oryza/genética , Sorghum/genética , Cromosomas Artificiales Bacterianos/genética , Dermatoglifia del ADN , Evolución Molecular , Biblioteca de Genes , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie
10.
Genetics ; 170(3): 1221-30, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15879505

RESUMEN

Little is known about the physical makeup of heterochromatin in the soybean (Glycine max L. Merr.) genome. Using DNA sequencing and molecular cytogenetics, an initial analysis of the repetitive fraction of the soybean genome is presented. BAC 076J21, derived from linkage group L, has sequences conserved in the pericentromeric heterochromatin of all 20 chromosomes. FISH analysis of this BAC and three subclones on pachytene chromosomes revealed relatively strict partitioning of the heterochromatic and euchromatic regions. Sequence analysis showed that this BAC consists primarily of repetitive sequences such as a 102-bp tandem repeat with sequence identity to a previously characterized approximately 120-bp repeat (STR120). Fragments of Calypso-like retroelements, a recently inserted SIRE1 element, and a SIRE1 solo LTR were present within this BAC. Some of these sequences are methylated and are not conserved outside of G. max and G. soja, a close relative of soybean, except for STR102, which hybridized to a restriction fragment from G. latifolia. These data present a picture of the repetitive fraction of the soybean genome that is highly concentrated in the pericentromeric regions, consisting of rapidly evolving tandem repeats with interspersed retroelements.


Asunto(s)
Cromosomas de las Plantas/genética , Evolución Molecular , Glycine max/genética , Heterocromatina/genética , Retroelementos/genética , Secuencias Repetidas en Tándem/genética , Secuencia de Bases , Southern Blotting , Cromosomas Artificiales Bacterianos , Hibridación Fluorescente in Situ , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
11.
Front Plant Sci ; 7: 534, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27200012

RESUMEN

WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA