Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Hazard Mater ; 386: 121900, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31896005

RESUMEN

Nano zero-valent metals adsorption coupled with advanced oxidation for environmental pollutants removal has been gaining attention recently. In this study, zero-valent iron-manganese (nZVIM) bimetallic nanocomposites were prepared via one-pot borohydride reduction and coupled with hypochlorite (ClO-) oxidation for enhanced thallium (Tl) removal from wastewater. Amorphous nZVIM nanoparticles were successfully synthesized, with a specific surface area of 106.89 m2/g, and a saturation magnetization of 65.16 emu/g. In comparison with the nZVIM adsorption or ClO- oxidation alone, the hybrid nZVIM/ClO- process achieved much faster Tl(I) removal rate over a wide pH range from 6 to 10. Maximum Tl(I) removal capacity was as high as 990.0 mg/g. The oxidation-induced adsorption for Tl(I) removal well followed the pseudo-first kinetic order model. Stable and effective adsorbent regeneration was achieved during the cyclic adsorption-desorption tests. This process also had high resistance to the interference of external cations, can act as an effective pretreatment for Tl(I) removal from the actual saline industrial wastewater. The main mechanisms for Tl(I) removal were found to be oxidation, surface precipitation, pore retention, and surface complexation. The nZVIM coupled with ClO- approach has great potential for Tl(I) removal from wastewater, and its application in other fields is highly anticipated.

2.
Sci Total Environ ; 698: 134166, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31494421

RESUMEN

The development of efficient and regenerable adsorbent coupled with advanced oxidation for enhanced thallium (Tl) removal has been a recent focus on wastewater treatment. In this study, a magnetite-based biochar derived from watermelon rinds was synthesized and used as a sustainable adsorbent and catalyst for hypochlorite oxidation and removal of Tl(I) from wastewater. The addition of hypochlorite substantially enhanced the Tl(I) removal under normal pH range (6-9). Maximum Tl adsorption capacity of 1123 mg/g was achieved, which is 12.3% higher than the highest value previously reported. The magnetic biochar can be regenerated using 0.1 mol/L HNO3 solution for elution in only 5 min, with a Tl desorption efficiency of 78.9%. The Tl removal efficiency was constantly higher than 98.5% during five consecutive recycle tests, indicating the effective reuse performance of the adsorbent. Oxidation, surface precipitation, pore retention and surface complexation were the main mechanisms for Tl(I) removal. The re-dissolution of Tl compounds and ion exchange of Tl cations with proton were the main mechanisms for adsorbent regeneration. Given the fast oxidation rate, high adsorption capacity, steady reusability and facile separability, this magnetic biochar-hypochlorite technique is a promising means for Tl(I) removal from wastewater. The catalytic hypochlorite oxidation induced by the magnetic biochar has also great potential to the effective removal of other pollutants.


Asunto(s)
Carbón Orgánico/química , Óxido Ferrosoférrico/química , Talio/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Adsorción , Ácido Hipocloroso , Talio/química , Aguas Residuales , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA