Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
BMC Musculoskelet Disord ; 21(1): 486, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32709223

RESUMEN

BACKGROUND: Osteoarthritis (OA) is the most prevalent type of arthritis, which commonly involves inflammation in the articular cartilage in OA pathogenesis. MicroRNAs (miRNAs) play essential roles in the regulation and pathophysiology of various diseases including OA. MiR-410-3p has been demonstrated to mediate inflammatory pathways, however, the regulatory functions of miR-410-3p in OA remain largely unknown. METHODS: The regulations of miR-410-3p were investigated in OA. Mouse primary chondrocytes and mouse in vivo models were used. The expression levels of miR-410-3p and HMGB1 were measured by qPCR. The transcription activity of NF-κB was assessed by luciferase reporter assay. MTT assay was performed to assess cellular proliferation. Cell apoptosis was evaluated with the Fluorescein Isothiocyanate (FITC) Annexin V assay. Expression levels of proteins were determined by Western blot. RESULTS: The results demonstrated that miR-410-3p was markedly downregulated in articular cartilage tissues as well as in lipopolysaccharide (LPS)-treated chondrocytes in OA mice. In addition, upregulation of miR-410-3p markedly inhibited LPS-induced apoptosis of chondrocytes. The results also demonstrated that the high mobility group box 1 (HMGB1) was a target of miR-410-3p. LPS-induced upregulated expression of HMGB1 significantly suppressed expression of miR-410-3p. Furthermore, upregulation of miR-410-3p markedly inhibited HMGB1 expression, the nuclear factor (NF)-kB activity and pro-inflammatory cytokines production. Taken together, the results suggested that miR-410-3p targeted HMGB1 and modulated chondrocytes apoptosis and inflammation through the NF-κB signaling pathway. CONCLUSIONS: These findings provide insights into the potential of miR-410-3p/ HMGB1 as therapeutic targets for OA treatment.


Asunto(s)
Proteína HMGB1 , MicroARNs , Osteoartritis , Animales , Apoptosis , Condrocitos , Proteína HMGB1/genética , Inflamación/genética , Ratones , MicroARNs/genética , Osteoartritis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA