Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(6): e2215900120, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36735757

RESUMEN

Antiaromaticity is extended from aromaticity as a complement to describe the unsaturated cyclic molecules with antiaromatic destabilization. To prepare antiaromatic species is a particularly challenging goal in synthetic chemistry because of the thermodynamic instability of such molecules. Among that, both Hückel and Möbius antiaromatic species have been reported, whereas the Craig one has not been realized to date. Here, we report the first example of planar Craig antiaromatic species. Eight Craig antiaromatic compounds were synthesized by deprotonation-induced reduction process and were fully characterized as follows. Single-crystal X-ray crystallography showed that these complexes have planar structures composed of fused five-membered rings with clearly alternating carbon-carbon bond lengths. In addition, proton NMR (1H NMR) spectroscopy in these structures showed distinctive upfield shifts of the proton peaks to the range of antiaromatic peripheral hydrogens. Experimental spectroscopy observations, along with density-functional theory (DFT) calculations, provided evidence for the Craig antiaromaticity of these complexes. Further study experimentally and theoretically revealed that the strong exothermicity of the acid-base neutralization process was the driving force for this challenging transformation forming Craig antiaromatic species. Our findings complete a full cycle of aromatic chemistry, opening an avenue for the development of new class of antiaromatic systems.

2.
Langmuir ; 40(25): 13122-13133, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38870401

RESUMEN

Efficient, durable, and economical electrocatalysts are crucial for advancing energy technology by facilitating the oxygen evolution reaction (OER). Here, ultrathin Ni-Fe metal-organic skeleton (MOF) nanosheets were created in situ on nickel foam (NiFe-UMNs/NF). The catalyst exhibited excellent OER catalytical abilities, with only 269 mV overpotentials at 250 mA cm-2. Besides, when integrated with Pt/C/NF, NiFe-UMNs/NF held the potential for application in industrial alkaline water electrolysis with an initial voltage retention of approximately 86% following a continuous operation of 100 h at a current density of 250 mA cm-2. The super performance of the NiFe-UMNs/NF catalyst was attributed to ultrathin morphology, super hydrophilicity, and synergistic effects between Ni and Fe within the MOF. In situ Raman showed that NiFe-UMNs were converted to NiFeOOH as the active species in the OER process. Density functional theory revealed that iron doping accelerated the rate-determining step and reduced the OER reaction energy barrier. This work elucidated a promising electrocatalyst for OER and enriched the practical implementation of MOF materials.

3.
Sensors (Basel) ; 24(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39065988

RESUMEN

Aiming at the complex characteristics of negative pressure waves in low-pressure pipelines inside of buildings, we proposed an estimation method of pressure fluctuation trends based on the robust Kalman filter and the improved VMD, which can be used for leakage detection. The reconstructed baseline signal can accurately describe the fluctuation trend of the negative pressure wave after the pressure drop, and quantitatively express the characteristic difference between the leakage condition and the gas usage condition. The robust Kalman filter was used to estimate the pressure fluctuations. The parameters of VMD were adaptively calculated based on the WAA and discrete scale space. The trend components contained in the IMFs were separated by a reconstruction based on the Fourier series. Based on the simulation signal, the method can accurately restore the trend component contained in the complex pressure signal. Based on the actual signals, the accuracy of small leakage detection is 96.7% and the accuracy of large leakage detection is 73.3%.

4.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791383

RESUMEN

A homeobox transcription factor is a conserved transcription factor, ubiquitous in eukaryotes, that regulates the tissue formation of structure, cell differentiation, proliferation, and cancer. This study identified the homeobox transcription factor family and its distribution in Phoma sorghina var. saccharum at the whole genome level. It elucidated the gene structures and evolutionary characteristics of this family. Additionally, knockout experiments were carried out and the preliminary function of these transcription factors was studied. Through bioinformatics approaches, nine homeobox transcription factors (PsHOX1-PsHOX9) were identified in P. sorghina var. saccharum, and these contained HOX-conserved domains and helix-turn-helix secondary structures. Nine homeobox gene deletion mutants were obtained using the homologous recombinant gene knockout technique. Protoplast transformation was mediated by polyethylene glycol (PEG) and the transformants were identified using PCR. The knockouts of PsHOX1, PsHOX2, PsHOX3, PsHOX4, PsHOX6, PsHOX8, and PsHOX9 genes resulted in a smaller growth diameter in P. sorghina var. saccharum. In contrast, the knockouts of the PsHOX3, PsHOX6, and PsHOX9 genes inhibited the formation of conidia and led to a significant decrease in the pathogenicity. This study's results will provide insights for understanding the growth and development of P. sorghina var. saccharum. The pathogenic mechanism of the affected sugarcane will provide an essential theoretical basis for preventing and controlling sugarcane twisted leaf disease.


Asunto(s)
Proteínas de Homeodominio , Enfermedades de las Plantas , Saccharum , Saccharum/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Ascomicetos/patogenicidad , Ascomicetos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hojas de la Planta/genética , Filogenia
5.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446015

RESUMEN

Nitrogen availability might play an essential role in plant diseases by enhancing fungal cell growth and influencing the expression of genes required for successful pathogenesis. Nitrogen availability could modulate secondary metabolic pathways as evidenced by the significant differential expression of several core genes involved in mycotoxin biosynthesis and genes encoding polyketide synthase/nonribosomal peptide synthetases, cytochrome P450 and carbohydrate-active enzymes in Fusarium sacchari, grown on different nitrogen sources. A combined analysis was carried out on the transcript and metabolite profiles of regulatory metabolic processes and the virulence of Fusarium sacchari grown on various nitrogen sources. The nitrogen regulation of the gibberellin gene cluster included the metabolic flux and multiple steps of gibberellin synthesis. UHPLC-MS/MS-based metabolome analysis revealed the coordination of these related transcripts and the accumulation of gibberellin metabolites. This integrated analysis allowed us to uncover additional information for a more comprehensive understanding of biological events relevant to fungal secondary metabolic regulation in response to nitrogen availability.


Asunto(s)
Fusarium , Transcriptoma , Metabolismo Secundario/genética , Nitrógeno/metabolismo , Espectrometría de Masas en Tándem , Giberelinas/metabolismo , Regulación Fúngica de la Expresión Génica
6.
BMC Nurs ; 22(1): 441, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993929

RESUMEN

BACKGROUND: Caring behavior among nurses would have an impact on patient outcomes. External organizational job resources and personal internal psychological resources are correlated to nurses' caring behavior. Authentic leadership and psychological capital were shown to be correlated with nurses' caring behavior in previous studies. However, the relationships among the three are nevertheless unclear. This study aimed to examine if psychological capital could act as a mediator between nursing managers' authentic leadership and nurses' caring behavior. METHODS: In December 2021, a total of 3,662 nurses were recruited from 37 hospitals in Anhui Province, China. They filled out online surveys, including general demographic information, the Authentic Leadership Questionnaire, the Psychological Capital Questionnaire, and the Caring Behavior Inventory. Structural Equation Modeling and the bootstrapping procedure were used to examine the mediating role of psychological capital. RESULTS: The scores of authentic leadership, psychological capital, and caring behavior of 3,495 nurses were 52.04 ± 13.24, 96.89 ± 17.78, and 104.28 ± 17.01, respectively. Psychological capital significantly mediated the relationship between authentic leadership and nurses' caring behavior (ß = 0.378, p < 0.001, 95% confidence interval: 0.350 ~ 0.402), which made up 78.75% of the total impact (0.480). CONCLUSION: The findings of this study suggested that nursing managers should develop an authentic leadership style, which can effectively improve nurses' caring behaviors toward patients in clinical practice. Meanwhile, nursing leaders should strengthen nurses' psychological evaluation and training, and promote nurses' caring behavior in clinical settings.

7.
J Am Chem Soc ; 144(21): 9292-9301, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35593455

RESUMEN

CO poisoning of Pt-group metal catalysts is a long-standing problem, particularly for hydrogen oxidation reaction in proton exchange membrane fuel cells. Here, we report a catalyst of Ru oxide-coated Ru supported on TiO2 (Ru@RuO2/TiO2), which can tolerate 1-3% CO, enhanced by about 2 orders of magnitude over the classic PtRu/C catalyst, for hydrogen electrooxidation in a rotating disk electrode test. This catalyst can work stably in 1% CO/H2 for 50 h. About 20% of active sites can survive even in a pure CO environment. The high CO tolerance is not via a traditional bifunctional mechanism, i.e., oxide promoting CO oxidation, but rather via hydrous metal oxide shell blocking CO adsorption. An ab initio molecular dynamics (AIMD) simulation indicates that water confined in grain boundaries of the Ru oxide layer and Ru surface can suppress the diffusion and adsorption of CO. This oxide blocking layer approach opens a promising avenue for the design of high CO-tolerant electrocatalysts for fuel cells.

8.
Phys Chem Chem Phys ; 24(44): 27277-27288, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36322016

RESUMEN

Understanding ethanol electrooxidation reaction kinetics is fundamental to the development of direct ethanol fuel cells. The utilization of binary PtAu catalysts has been reported recently as an effective strategy to enhance ethanol electrocatalytic oxidation; however, the catalytic reaction mechanisms are still unclear. In this work, we systematically studied the ethanol electrooxidation reaction mechanisms on Pt/Au(111) model surfaces at an atomic level through high level density functional theory (DFT) calculations; particularly the flat (111) terrace and the stepped (111) × (110) and (111) × (100) interfaces with diverse surface atomic arrangements were considered, respectively. It was found that for ethanol dissociation, the flat (111) terrace is more active than the stepped (111) × (110) and (111) × (100) interfaces. The stepped interfaces, however, could activate water from the aqueous electrolyte solution to form adsorbed OH* at the electrode potential below 0.53 V vs. SHE (standard hydrogen electrode), which is of great importance in coupling with the CH3CO* intermediate formed from ethanol dissociation to produce acetic acid as the final product of the ethanol electrooxidation reaction without releasing CO2. The C-C bond splitting process for ethanol oxidation to form C1 products was very limited. The terrace sites can facilitate both ethanol decomposition and acetic acid formation at the electrode potential above 0.53 V vs. SHE. Our results clearly identify the fact that for ethanol electrooxidation reactions, with an increase in electrode potential, the active sites on Pt/Au(111) surfaces change from those at the stepped interfaces to the flat terrace sites.

9.
Int J Med Sci ; 19(2): 377-392, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35165523

RESUMEN

Background: Necroptosis, a cell death of caspase-independence, plays a pivotal role in cancer biological regulation. Although necroptosis is closely associated with oncogenesis, cancer metastasis, and immunity, there remains a lack of studies determining the role of necroptosis-related genes (NRGs) in the highly immunogenic cancer type, kidney renal clear cell carcinoma (KIRC). Methods: The information of clinicopathology and transcriptome was extracted from TCGA database. Following the division into the train and test cohorts, a three-NRGs (TLR3, FASLG, ZBP1) risk model was identified in train cohort by LASSO regression. The overall survival (OS) comparison was conducted between different risk groups through Kaplan-Meier analysis, which was further validated in test cohort. The Cox proportional hazards regression model was introduced to assess its impact of clinicopathological factors and risk score on survival. ESTIMATE and CIBERSORT algorithms were introduced to evaluate immune microenvironment, while enrichment analysis was conducted to explore the biological significance. Correlation analysis was applied for the correlation assessment between checkpoint gene expression and risk score, between gene expression and therapeutic response. Gene expressions from TCGA were verified by GEO datasets and immunohistochemistry (IHC) analysis. Results: This NRGs-related signature predicted poorer OS in high-risk group, which was also verified in test cohort. Risk score could also independently predict survival outcome of KIRC. Significant changes were also found in immune microenvironment and checkpoint gene expressions between different risk groups, with immune functional enrichment in high-risk group. Interestingly, therapeutic response was correlated with the expressions of NRGs. The expressions of NRGs from TCGA were consistent with those from GEO datasets and IHC analysis. Conclusion: The NRGs-related signature functions as a novel prognostic predictor of immune microenvironment and therapeutic response in KIRC.


Asunto(s)
Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Necroptosis/genética , Transcriptoma/genética , Microambiente Tumoral/genética , Anciano , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/mortalidad , Estudios de Cohortes , Femenino , Humanos , Estimación de Kaplan-Meier , Neoplasias Renales/mortalidad , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Análisis de Regresión , Factores de Riesgo
10.
Chem Soc Rev ; 50(15): 8790-8817, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34160484

RESUMEN

The electrocatalytic oxygen evolution reaction (OER) is a critical half-cell reaction for hydrogen production via water electrolysis. However, the practical OER suffers from sluggish kinetics and thus requires efficient electrocatalysts. Transition metal-based layered double hydroxides (LDHs) represent one of the most active classes of OER catalysts. An in-depth understanding of the activity of LDH based electrocatalysts can promote further rational design and active site regulation of high-performance electrocatalysts. In this review, the fundamental understanding of the structural characteristics of LDHs is demonstrated first, then comparisons and in-depth discussions of recent advances in LDHs as highly active OER catalysts in alkaline media are offered, which include both experimental and computational methods. On top of the active site identification and structural characterization of LDHs on an atomic scale, strategies to promote the OER activity are summarised, including doping, intercalation and defect-making. Furthermore, the concept of superaerophobicity, which has a profound impact on the performance of gas evolution electrodes, is explored to enhance LDHs and their derivatives for a large scale OER. In addition, certain operating standards for OER measurements are proposed to avoid inconsistency in evaluating the OER activity of LDHs. Finally, several key challenges in using LDHs as anode materials for large scale water splitting, such as the issue of stability and the adoption of membrane-electrode-assembly based electrolysers, are emphasized to shed light on future research directions.

11.
Mol Hum Reprod ; 27(1)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33543289

RESUMEN

Accumulating evidence has shown that Wnt signaling is deeply involved in male reproductive physiology, and malfunction of the signal path can cause pathological changes in genital organs and sperm cells. These abnormalities are diverse in manifestation and have been constantly found in the knockout models of Wnt studies. Nevertheless, most of the research solely focused on a certain factor in the Wnt pathway, and there are few reports on the overall relation between Wnt signals and male reproductive physiology. In our review, Wnt findings relating to the reproductive system were sought and summarized in terms of Wnt ligands, Wnt receptors, Wnt intracellular signals and Wnt regulators. By sorting out and integrating relevant functions, as well as underlining the controversies among different reports, our review aims to offer an overview of Wnt signaling in male reproductive physiology and pathology for further mechanistic studies.


Asunto(s)
Reproducción/fisiología , Proteínas Wnt/farmacología , Vía de Señalización Wnt/fisiología , Animales , Humanos , Infertilidad Masculina/metabolismo , Masculino , Receptores Wnt/fisiología
12.
J Chem Phys ; 155(5): 054901, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34364327

RESUMEN

By using coarse-grained molecular dynamics simulations, we have investigated the structure and dynamics of supercooled single-chain cross-linked nanoparticle (SCNP) melts having a range of cross-linking degrees ϕ. We find a nearly linear increase in glass-transition temperature (Tg) with increasing ϕ. Correspondingly, we have also experimentally synthesized a series of polystyrene-based SCNPs and have found that the measured Tg estimated from differential scanning calorimetry is qualitatively consistent with the trend predicted by our simulation estimates. Experimentally, an increase in Tg as large as ΔTg = 61 K for ϕ = 0.36 is found compared with their linear chain counterparts, indicating that the changes in dynamics with cross-links are quite appreciable. We attribute the increase in Tg to the enlarged effective hard-core volume and the corresponding reduction in the free volume of the polymer segments. Topological constraints evidently frustrate the local packing. In addition, the introduction of intra-molecular cross-linking bonds slows down the structural relaxation and simultaneously enhances the local coupling motion on the length scales within SCNPs. Consequently, a more pronounced dynamical heterogeneity (DH) is observed for larger ϕ, as quantified by measuring the dynamical correlation length through the four-point susceptibility parameter, χ4. The increase in DH is directly related to the enhanced local cooperative motion derived from intra-molecular cross-linking bonds and structural heterogeneity derived from the cross-linking process. These results shed new light on the influence of intra-molecular topological constraints on the segmental dynamics of polymer melts.

13.
Acta Med Okayama ; 75(4): 415-421, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34511607

RESUMEN

Human RAD17, as an agonist of checkpoint signaling, plays an essential role in mediating DNA damage. This hospital-based case-control study aimed to explore the association between RAD17 rs1045051, a missense sin-gle nucleotide polymorphism (SNP), and prostate cancer risk. Subjects were 358 prostate cancer patients and 314 cancer-free urology patients undergoing treatment at the Zhujiang Hospital of Southern Medical University in China. RAD17 gene polymorphism rs1045051 was evaluated by the SNaPshot method. Compared with the RAD17 gene polymorphism rs1045051 AA genotype, there was a higher risk of prostate cancer for the CC gen-otype (adjusted odds ratio [AOR] = 1.731, 95% confidence interval [95%CI] = 1.031-2.908, p = 0.038). Compared with the A allele, the C allele was significantly associated with the disease status (AOR = 1.302, 95%CI = 1.037-1.634, p = 0.023). All these findings indicate that in the SNP rs1045051, both the CC genotype and C allele may have a substantial influence on the prostate cancer risk.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular , Neoplasias de la Próstata/genética , Anciano , Biomarcadores/sangre , Estudios de Casos y Controles , Daño del ADN/genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/sangre
14.
Langmuir ; 36(39): 11422-11428, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-32862650

RESUMEN

Understanding of dynamic behaviors of gas bubbles on solid surfaces has significant impacts on gas-involving electrochemical reactions, mineral flotation, and so on in industry. Contact angle (θ) is widely employed to characterize the wetting behaviors of bubbles on solid surfaces; however, it usually fluctuates within the bubble's advancing (θa) and receding (θr) range. Although the term of most-stable contact angle (θms) was defined previously as the closest valuable approximation for thermodynamically meaningful contact angle for a droplet on a solid surface, it has not been widely studied; and the precise θms measurement methods are inadequate to describe bubbles' wetting behaviors on solid surfaces. Herein, we proposed to take θms as the mean value of θa and θr, as a more accurate descriptor of gas bubbles' dynamic behaviors on nonideal solid surfaces, similar to the definition of droplets' θms on solid surfaces. The feasibility and accuracy of the proposed θms have been evidenced by recording the bubbles' contacting behaviors on solid surfaces with varied wettabilities. In addition, it was found that the contact angle hysteresis (δ), as the difference between θa and θr, reached its maximum value when θms approached 90°, regardless of the roughness (r) of the substrates. Finally, built on the above concept, the lateral adhesion force (f) of the gas bubble on the solid interface, which worked on the three-phase contact line (TPCL) of an individual bubble on a solid surface against its lateral motion during the bubble advancing or receding process, was described quantitatively by combining θa, θr, and the liquid-gas interfacial tension (γlg). Experimental and theoretical data jointly confirmed that f reached its maximum value at θms ∼ 90°, namely, a "super-sticky" state, which described the dynamically most sluggish movement of the bubble along the solid surface.

15.
Acta Med Okayama ; 74(2): 175-178, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32341594

RESUMEN

Urolithiasis, a common condition in patients with spinal deformity, poses a challenge to surgical procedures and anesthetic management. A 51-year-old Chinese male presented with bilateral complex renal calculi. He was also affected by severe kyphosis deformity and spinal stiffness due to ankylosing spondylitis. Dr. Li performed the percutaneous nephrolithotomy under local infiltration anesthesia with the patient in a kneeling prone position, achieving satisfactory stone clearance with no severe complications. We found this protocol safe and effective to manage kidney stones in patients with spinal deformity. Local infiltration anesthesia may benefit patients for whom epidural anesthesia and intubation anesthesia are difficult.


Asunto(s)
Anquilosis/complicaciones , Cálculos Renales/cirugía , Cifosis/complicaciones , Nefrolitotomía Percutánea/métodos , Posicionamiento del Paciente , Anestesia Local/métodos , Humanos , Cálculos Renales/complicaciones , Cálculos Renales/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Rayos X
16.
Mol Carcinog ; 57(7): 911-925, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29573464

RESUMEN

Kinesin family member 20B (KIF20B) has been reported to have an oncogenic role in bladder and hepatocellular cancer cells, but its role in colorectal cancer (CRC) progression remains unclear. In this study, we assessed the mRNA and protein levels of KIF20B in CRC tissues using qRT-PCR and immunohistochemistry, respectively. KIF20B was overexpressed in CRC tissues and was associated with cancer invasion and metastasis. Mechanistically, KIF20B overexpression promoted the epithelial-mesenchymal transition (EMT) process mediated by glioma-associated oncogene 1 (Gli1) as well as CRC cell migration and invasion. Interestingly, KIF20B was localized in pseudopod protrusions of CRC cells and influenced the formation of cell protrusions, especially the EMT-related invadopodia. Moreover, intracellular actin dynamic participated in the modulation of the Gli1-mediated EMT and EMT-related cell pseudopod protrusion formation induced by KIF20B. We identified a role for KIF20B in CRC progression and revealed a correlation between KIF20B expression in CRC tissues and patient prognosis. The underlying mechanism was associated with the Gli1-mediated EMT and EMT-related cell protrusion formation modulated by intracellular actin dynamic. Thus, KIF20B may be a potential biomarker and promising treatment target for CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/genética , Cinesinas/genética , Proteína con Dedos de Zinc GLI1/genética , Actinas/genética , Anciano , Línea Celular Tumoral , Movimiento Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Pronóstico
17.
Phys Chem Chem Phys ; 19(5): 3800-3806, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28102376

RESUMEN

The H2O splitting mechanism is a very attractive alternative used in electrochemistry for the formation of O3. The most efficient catalysts employed for this reaction at room temperature are SnO2-based, in particular the Ni/Sb-SnO2 catalyst. In order to investigate the H2O splitting mechanism density functional theory (DFT) was performed on a Ni/Sb-SnO2 surface with oxygen vacancies. By calculating different SnO2 facets, the (110) facet was deemed most stable, and further doped with Sb and Ni. On this surface, the H2O splitting mechanism was modelled paying particular attention to the final two steps, the formation of O2 and O3. Previous studies on ß-PbO2 have shown that the final step in the reaction (the formation of O3) occurs via an Eley-Rideal style interaction where surface O2 desorbs before attacking surface O to form O3. It is revealed that for Ni/Sb-SnO2, although the overall reaction is the same the surface mechanism is different. The formation of O3 is found to occur through a Langmuir-Hinshelwood mechanism as opposed to the Eley-Rideal mechanism. In addition to this the relevant adsorption energies (Eads), Gibb's free energy (ΔGrxn) and activation barriers (Eact) for the final two steps modelled in the gas phase have been shown, providing the basis for a tool to develop new materials with higher current efficiencies.

18.
Phys Chem Chem Phys ; 19(11): 7476-7480, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28262859

RESUMEN

In this work, we have studied methanol oxidation mechanisms on RuO2(100) by using density functional theory (DFT) calculations and ab initio molecular dynamics (MD) simulations with some explicit interfacial water molecules. The overall mechanisms are identified as: CH3OH* → CH3O* → HCHO* → HCH(OH)2* → HCHOOH* → HCOOH* → mono-HCOO* → CO2*, without CO formation. This study provides a theoretical insight into C1 molecule oxidation mechanisms at atomic levels on metal oxide surfaces under an aqueous environment.

19.
Phys Chem Chem Phys ; 18(22): 15304-11, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27211005

RESUMEN

Electroreduction of CO2 to hydrocarbons on a copper surface has attracted much attention in the last few decades for providing a sustainable way for energy storage. During the CO2 and further CO electroreduction processes, deoxygenation that is C-O bond dissociation, and hydrogenation that is C-H bond formation, are two main types of surface reactions catalyzed by the copper electrode. In this work, by performing the state-of-the-art constrained ab initio molecular dynamics simulations, we have systematically investigated deoxygenation and hydrogenation reactions involving two important intermediates, COHads and CHOads, under various conditions of (i) on a Cu(100) surface without water molecules, (ii) at the water/Cu(100) interface and (iii) at the charged water/Cu(100) interface, in order to elucidate the electrochemical interfacial influences. It has been found that the electrochemical interface can facilitate considerably the C-O bond dissociation via changing the reaction mechanisms. However, C-H bond formation has not been affected by the presence of water or electrical charge. Furthermore, the promotional roles of an aqueous environment and negative electrode potential in deoxygenation have been clarified, respectively. This fundamental study provides an atomic level insight into the significance of the electrochemical interface towards electrocatalysis, which is of general importance for understanding electrochemistry.

20.
Phys Chem Chem Phys ; 18(23): 15501-4, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27181461

RESUMEN

We have successfully built a general framework to comprehend the structure-selectivity relationship in ethanol electrooxidation on platinum by density functional theory calculations. Based on the reaction mechanisms on three basal planes and five stepped surfaces, it was found that only (110) and n(111) × (110) sites can enhance CO2 selectivity but other non-selective step sites are more beneficial to activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA