Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Brain Mapp ; 45(7): e26696, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685815

RESUMEN

Previous research has suggested that certain types of the affective temperament, including depressive, cyclothymic, hyperthymic, irritable, and anxious, are subclinical manifestations and precursors of mental disorders. However, the neural mechanisms that underlie these temperaments are not fully understood. The aim of this study was to identify the brain regions associated with different affective temperaments. We collected the resting-state functional magnetic resonance imaging (fMRI) data from 211 healthy adults and evaluated their affective temperaments using the Temperament Evaluation of Memphis, Pisa, Paris and San Diego Autoquestionnaire. We used intersubject representational similarity analysis to identify brain regions associated with each affective temperament. Brain regions associated with each affective temperament were detected. These regions included the prefrontal cortex, anterior cingulate cortex (ACC), precuneus, amygdala, thalami, hippocampus, and visual areas. The ACC, lingual gyri, and precuneus showed similar activity across several affective temperaments. The similarity in related brain regions was high among the cyclothymic, irritable, and anxious temperaments, and low between hyperthymic and the other affective temperaments. These findings may advance our understanding of the neural mechanisms underlying affective temperaments and their potential relationship to mental disorders and may have potential implications for personalized treatment strategies for mood disorders.


Asunto(s)
Afecto , Imagen por Resonancia Magnética , Temperamento , Humanos , Adulto , Masculino , Femenino , Adulto Joven , Temperamento/fisiología , Afecto/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología
2.
Opt Express ; 32(3): 3835-3851, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297596

RESUMEN

High-level detection of weak targets under bright light has always been an important yet challenging task. In this paper, a method of effectively fusing intensity and polarization information has been proposed to tackle this issue. Specifically, an attention-guided dual-discriminator generative adversarial network (GAN) has been designed for image fusion of these two sources, in which the fusion results can maintain rich background information in intensity images while significantly completing target information from polarization images. The framework consists of a generator and two discriminators, which retain the texture and salient information as much as possible from the source images. Furthermore, attention mechanism is introduced to focus on contextual semantic information and enhance long-term dependency. For preserving salient information, a suitable loss function has been introduced to constrain the pixel-level distribution between the result and the original image. Moreover, the real scene dataset of weak targets under bright light has been built and the effects of fusion between polarization and intensity information on different weak targets have been investigated and discussed. The results demonstrate that the proposed method outperforms other methods both in subjective evaluations and objective indexes, which prove the effectiveness of achieving accurate detection of weak targets in bright light background.

3.
J Acoust Soc Am ; 155(5): 3195-3205, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38738938

RESUMEN

Recently, acoustic communication employing orbital angular momentum (OAM) opens another avenue for efficient data transmission in aquatic environments. Current topological charge (TC) detection of OAM beams relies on the orthogonality among different-order OAM beams. However, such strategy requires measurements of the complete azimuthal acoustic pressure, which inevitably reduces the efficiency and increases the bit error rate (BER). To address these challenges, this study proposes a modified dynamic modal decomposition (DMD) method by partially sampling the acoustic field for precise TC detection. Numerical simulations confirm the accuracy of this approach in extracting single or multiple TCs magnitudes within a partially sampled acoustic field. We theoretically compare the performance of the modified DMD approach with conventional orthogonal decoding method. Simulation results indicate that our modified DMD scheme exhibits lower BER under the same noise interference and is more robust to the array misalignment. This research introduces an efficient demodulation solution for acoustic OAM communication, offering potential benefits for simplifying receiver array design and enhancing long-distance underwater data transmission.

4.
Sensors (Basel) ; 24(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339661

RESUMEN

Vortex beams carrying orbital angular momentum (OAM) provide a new degree of freedom for light waves in addition to the traditional degrees of freedom, such as intensity, phase, frequency, time, and polarization. Due to the theoretically unlimited orthogonal states, the physical dimension of OAM is capable of addressing the problem of low information capacity. With the advancement of the OAM optical communication technology, OAM router devices (OAM-RDs) have played a key role in significantly improving the flexibility and practicability of communication systems. In this review, major breakthroughs in the OAM-RDs are summarized, and the latest technological standing is examined. Additionally, a detailed account of the recent works published on techniques related to the OAM-RDs has been categorized into five areas: channel multicasting, channel switching, channel filtering, channel hopping, and channel adding/extracting. Meanwhile, the principles, research methods, advantages, and disadvantages are discussed and summarized in depth while analyzing the future development trends and prospects of the OAM-RDs.

5.
J Environ Manage ; 367: 122048, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39088903

RESUMEN

Monitoring suspended sediment concentration (SSC) in rivers is pivotal for water quality management and sustainable river ecosystem development. However, achieving continuous and precise SSC monitoring is fraught with challenges, including low automation, lengthy measurement processes, and high cost. This study proposes an innovative approach for SSC identification in rivers using multimodal data fusion. We developed a robust model by harnessing colour features from video images, motion characteristics from the Lucas-Kanade (LK) optical flow method, and temperature data. By integrating ResNet with a mixed density network (MDN), our method fused the image and optical flow fields, and temperature data to enhance accuracy and reliability. Validated at a hydropower station in the Xinjiang Uygur Autonomous Region, China, the results demonstrated that while the image field alone offers a baseline level of SSC identification, it experiences local errors under specific conditions. The incorporation of optical flow and water temperature information enhanced model robustness, particularly when coupling the image and optical flow fields, yielding a Nash-Sutcliffe efficiency (NSE) of 0.91. Further enhancement was observed with the combined use of all three data types, attaining an NSE of 0.93. This integrated approach offers a more accurate SSC identification solution, enabling non-contact, low-cost measurements, facilitating remote online monitoring, and supporting water resource management and river water-sediment element monitoring.


Asunto(s)
Monitoreo del Ambiente , Ríos , Temperatura , Ríos/química , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/análisis , China , Calidad del Agua
6.
Commun Biol ; 7(1): 517, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693344

RESUMEN

How does the human brain construct cognitive maps for decision-making and inference? Here, we conduct an fMRI study on a navigation task in multidimensional abstract spaces. Using a deep neural network model, we assess learning levels and categorized paths into exploration and exploitation stages. Univariate analyses show higher activation in the bilateral hippocampus and lateral prefrontal cortex during exploration, positively associated with learning level and response accuracy. Conversely, the bilateral orbitofrontal cortex (OFC) and retrosplenial cortex show higher activation during exploitation, negatively associated with learning level and response accuracy. Representational similarity analysis show that the hippocampus, entorhinal cortex, and OFC more accurately represent destinations in exploitation than exploration stages. These findings highlight the collaboration between the medial temporal lobe and prefrontal cortex in learning abstract space structures. The hippocampus may be involved in spatial memory formation and representation, while the OFC integrates sensory information for decision-making in multidimensional abstract spaces.


Asunto(s)
Cognición , Hipocampo , Imagen por Resonancia Magnética , Corteza Prefrontal , Humanos , Hipocampo/fisiología , Hipocampo/diagnóstico por imagen , Masculino , Corteza Prefrontal/fisiología , Corteza Prefrontal/diagnóstico por imagen , Femenino , Cognición/fisiología , Adulto , Adulto Joven , Mapeo Encefálico/métodos , Toma de Decisiones/fisiología
7.
ACS Nano ; 18(11): 8051-8061, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38445976

RESUMEN

The intracellular clustering of anisotropic nanoparticles is crucial to the improvement of the localized surface plasmon resonance (LSPR) for phototherapy applications. Herein, we programmed the intracellular clustering process of spiky nanoparticles (SNPs) by encapsulating them into an anionic liposome via a frame-guided self-assembly approach. The liposome-encapsulated SNPs (lipo-SNPs) exhibited distinct and enhanced lysosome-triggered aggregation behavior while maintaining excellent monodispersity, even in acidic or protein-rich environments. We explored the enhancement of the photothermal therapy performance for SNPs as a proof of concept. The photothermal conversion efficiency of lipo-SNPs clusters significantly increased 15 times compared to that of single lipo-SNPs. Upon accumulation in lysosomes with a 2.4-fold increase in clustering, lipo-SNPs resulted in an increase in cell-killing efficiency to 45% from 12% at 24 µg/mL. These findings indicated that liposome encapsulation provides a promising approach to programing nanoparticle clustering at the target site, which facilitates advances in the development of smart nanomedicine with programmable enhancement in LSPR.


Asunto(s)
Liposomas , Nanopartículas , Fototerapia/métodos , Resonancia por Plasmón de Superficie , Nanomedicina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA