Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 459
Filtrar
1.
Nature ; 612(7939): 292-300, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36385527

RESUMEN

Teosinte, the wild ancestor of maize (Zea mays subsp. mays), has three times the seed protein content of most modern inbreds and hybrids, but the mechanisms that are responsible for this trait are unknown1,2. Here we use trio binning to create a contiguous haplotype DNA sequence of a teosinte (Zea mays subsp. parviglumis) and, through map-based cloning, identify a major high-protein quantitative trait locus, TEOSINTE HIGH PROTEIN 9 (THP9), on chromosome 9. THP9 encodes an asparagine synthetase 4 enzyme that is highly expressed in teosinte, but not in the B73 inbred, in which a deletion in the tenth intron of THP9-B73 causes incorrect splicing of THP9-B73 transcripts. Transgenic expression of THP9-teosinte in B73 significantly increased the seed protein content. Introgression of THP9-teosinte into modern maize inbreds and hybrids greatly enhanced the accumulation of free amino acids, especially asparagine, throughout the plant, and increased seed protein content without affecting yield. THP9-teosinte seems to increase nitrogen-use efficiency, which is important for promoting a high yield under low-nitrogen conditions.


Asunto(s)
Nitrógeno , Zea mays , Zea mays/genética , Familia , Semillas/genética
2.
PLoS Pathog ; 20(3): e1012064, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38437247

RESUMEN

Plant viruses must move through plasmodesmata (PD) to complete their life cycles. For viruses in the Potyviridae family (potyvirids), three viral factors (P3N-PIPO, CI, and CP) and few host proteins are known to participate in this event. Nevertheless, not all the proteins engaging in the cell-to-cell movement of potyvirids have been discovered. Here, we found that HCPro2 encoded by areca palm necrotic ring spot virus (ANRSV) assists viral intercellular movement, which could be functionally complemented by its counterpart HCPro from a potyvirus. Affinity purification and mass spectrometry identified several viral factors (including CI and CP) and host proteins that are physically associated with HCPro2. We demonstrated that HCPro2 interacts with both CI and CP in planta in forming PD-localized complexes during viral infection. Further, we screened HCPro2-associating host proteins, and identified a common host protein in Nicotiana benthamiana-Rubisco small subunit (NbRbCS) that mediates the interactions of HCPro2 with CI or CP, and CI with CP. Knockdown of NbRbCS impairs these interactions, and significantly attenuates the intercellular and systemic movement of ANRSV and three other potyvirids (turnip mosaic virus, pepper veinal mottle virus, and telosma mosaic virus). This study indicates that a nucleus-encoded chloroplast-targeted protein is hijacked by potyvirids as the scaffold protein to assemble a complex to facilitate viral movement across cells.


Asunto(s)
Potyvirus , Proteínas Virales , Proteínas Virales/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Potyvirus/metabolismo , Enfermedades de las Plantas
3.
Plant Physiol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991561

RESUMEN

Hybrid plants are found extensively in the wild, and they often demonstrate superior performance of complex traits over their parents and other selfing plants. This phenomenon, known as heterosis, has been extensively applied in plant breeding for decades. However, the process of decoding hybrid plant genomes has seriously lagged due to the challenges associated with genome assembly and the lack of appropriate methodologies for their subsequent representation and analysis. Here, we present the assembly and analysis of two hybrids, an intraspecific hybrid between two maize (Zea may ssp. mays) inbred lines and an interspecific hybrid between maize and its wild relative teosinte (Zea may ssp. parviglumis), utilizing a combination of PacBio High Fidelity (HiFi) sequencing and chromatin conformation capture sequencing data. The haplotypic assemblies are well-phased at chromosomal scale, successfully resolving the complex loci with extensive parental structural variations (SVs). By integrating into a bi-parental genome graph, the haplotypic assemblies can facilitate downstream short-reads-based SV calling and allele-specific gene expression analysis, demonstrating outstanding advantages over a single linear genome. Our work offers a comprehensive workflow that aims to facilitate the decoding of numerous hybrid plant genomes, particularly those with unknown or inaccessible parentage, thereby enhancing our understanding of genome evolution and heterosis.

4.
BMC Biotechnol ; 24(1): 12, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454400

RESUMEN

OBJECTIVE: The objective of this study was to establish a methodology for determining carboxymethyl lysine (CML) and carboxyethyl lysine (CEL) concentrations in human plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The test results were also used for clinical aging research. METHODS: Human plasma samples were incubated with aqueous perfluorovaleric acid (NFPA), succeeded by precipitation utilizing trichloroacetic acid, hydrolysis facilitated by hydrochloric acid, nitrogen drying, and ultimate re-dissolution utilizing NFPA, followed by filtration. Cotinine-D3 was added as an internal standard. The separation was performed on an Agela Venusil ASB C18 column (50 mm × 4.6 mm, 5 µm) with a 5 mmol/L NFPA and acetonitrile/water of 60:40 (v/v) containing 0.15% formic acid. The multiple reaction monitoring mode was used for detecting CML, CEL, and cotinine-D3, with ion pairs m/z 205.2 > 84.1 (for quantitative) and m/z 205.2 > m/z 130.0 for CML, m/z 219.1 > 84.1 (for quantitative) and m/z 219.1 > m/z 130.1 for CEL, and m/z 180.1 > 80.1 for cotinine-D3, respectively. RESULTS: The separation of CML and CEL was accomplished within a total analysis time of 6 minutes. The retention times of CML, CEL, and cotinine-D3 were 3.43 minutes, 3.46 minutes, and 4.50 minutes, respectively. The assay exhibited linearity in the concentration range of 0.025-1.500 µmol/L, with a lower limit of quantification of 0.025 µmol/L for both compounds. The relative standard deviations of intra-day and inter-day were both below 9%, and the relative errors were both within the range of ±4%. The average recoveries were 94.24% for CML and 97.89% for CEL. CONCLUSION: The results indicate that the developed methodology is fast, highly sensitive, highly specific, reproducible, and suitable for the rapid detection of CML and CEL in clinical human plasma samples. The outcomes of the clinical research project on aging underscored the important indicative significance of these two indicators for research on human aging.


Asunto(s)
Lisina , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Lisina/análisis , Lisina/química , Cotinina , Gerociencia , Productos Finales de Glicación Avanzada/análisis , Productos Finales de Glicación Avanzada/química , Cromatografía Líquida de Alta Presión
5.
Environ Sci Technol ; 58(6): 2902-2911, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38294202

RESUMEN

Conventional biological nutrient removal processes rely on external aeration and produce significant carbon dioxide (CO2) emissions. This study constructed a phototrophic simultaneous nitrification-denitrification phosphorus removal (P-SNDPR) system to treat low carbon to nitrogen (C/N) ratios wastewater and investigated the impact of sludge retention time (SRT) on nutrient removal performance, nitrogen conversion pathway, and microbial structure. Results showed that the P-SNDPR system at SRT of 15 days had the highest nutrient removal capacity, achieving over 85% and 98% removal of nitrogen and phosphorus, respectively, meanwhile maintaining minimal CO2 emissions. Nitrogen removal was mainly through assimilation at SRTs of 5 and 10 days, and nitrification-denitrification at SRTs of 15 and 20 days. Stable partial nitrification was facilitated by photoinhibition and low DO levels. Flow cytometry sorting technique results revealed SRT drove community structural changes in translational activity (BONCAT+) microbes, where BONCAT+ microbes were mainly simultaneous nitrogen and phosphorus removal bacteria (Candidatus Accumulibacter), denitrifying bacteria (Candidatus Competibacter and Plasticicumulans), ammonia-oxidizing bacteria (Nitrosomonas), and microalgae (Chlorella and Dictyosphaerium). The P-SNDPR system represents a novel, carbon-neutral process for efficient nutrient removal from low C/N ratio wastewater without aeration and external carbon source additions.


Asunto(s)
Chlorella , Aguas Residuales , Nitrificación , Desnitrificación , Fósforo/metabolismo , Nitrógeno/química , Nitrógeno/metabolismo , Dióxido de Carbono , Chlorella/metabolismo , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología
6.
J Cardiothorac Vasc Anesth ; 38(2): 517-525, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37932194

RESUMEN

OBJECTIVES: To assess the efficacy and safety of albumin as pump priming fluid in cardiac surgery. DESIGN: Meta-analysis of randomized controlled trials. SETTING: Each study was conducted in a surgical center or intensive care unit. PARTICIPANTS: Adult and pediatric patients undergoing cardiac surgery with cardiopulmonary bypass who received circuit priming fluids. INTERVENTIONS: Extracorporeal circuit priming with either albumin or crystalloid. MEASUREMENTS AND RESULTS: Fourteen eligible randomized controlled trials with 741 patients were included in the present meta-analysis. Albumin prime had lower bleeding (CI -202.20 to -142.88 mL, p < 0.00001) and showed a greater advantage in preserving platelet counts (CI 14.85-21.48 × 103 mm-3, p < 0.00001), maintaining colloid osmotic pressure and sustaining negative fluid balance. No significant differences were found in the remaining study outcomes. CONCLUSIONS: Albumin was shown to be safe and efficacious in extracorporeal circulation perfusion. However, its clinical advantages were not clearly highlighted, as there were no significant differences in the number of deaths, length of hospital stay, or intensive care unit duration. The results should be interpreted cautiously, as most included studies were small in scale, and the total number of participants was limited.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Adulto , Humanos , Niño , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Procedimientos Quirúrgicos Cardíacos/métodos , Puente Cardiopulmonar/efectos adversos , Puente Cardiopulmonar/métodos , Equilibrio Hidroelectrolítico , Soluciones Cristaloides , Albúminas/efectos adversos , Ensayos Clínicos Controlados Aleatorios como Asunto
7.
Nano Lett ; 23(16): 7470-7476, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37540493

RESUMEN

Hydrogen separation membranes are a critical component in the emerging hydrogen economy, offering an energy-efficient solution for the purification and production of hydrogen gas. Inspired by the recent discovery of monolayer covalent fullerene networks, here we show from concentration-gradient-driven molecular dynamics that quasi-square-latticed monolayer fullerene membranes provide the best pore size match, a unique funnel-shaped pore, and entropic selectivity. The integration of these attributes renders these membranes promising for separating H2 from larger gases such as CO2 and O2. The ultrathin membranes exhibit excellent hydrogen permeance as well as high selectivity for H2/CO2 and H2/O2 separations, surpassing the 2008 Robeson upper bounds by a large margin. The present work points toward a promising direction of using monolayer fullerene networks as membranes for high-permeance, selective hydrogen separation for processes such as water splitting.

8.
J Environ Manage ; 351: 119839, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104464

RESUMEN

Photo-enhanced Biological Phosphorus Removal (PEBPR) systems, promising wastewater treatment technology, offer efficient phosphorus removal without external oxygen. However, comprehending the impact of sludge retention time (SRT) on the system is crucial for successful implementation. This study investigated the SRT effect on nutrient fate, microbial community, and bacterial phototolerance in PEBPR systems. PEBPR systems exhibited good bacterial phototolerance at SRT of 10, 15, and 20 d, with optimal phosphorus-accumulation metabolism observed at SRT of 10 and 15d. However, at SRT of 5d, increased light sensitivity and glycogen-accumulating organisms (GAOs) growth resulted in poor P removal (71.9%). Accumulibacter-IIC were the dominant P accumulating organisms (PAOs) at SRT of 10, 15, and 20 d. Accumulibacter-I, IIC and IIF were the major PAOs at SRT of 5 d. The decrease in SRT promoted the microalgal population diversity, and Dictyosphaerium and Chlorella were the major microalgal species in this study. Flow cytometry results revealed high light intensity triggered intracellular Fe2+ efflux, limiting translation activity and metabolism. Moreover, PAOs had lower phototolerance than GAOs due to Poly-P bound intracellular Mg2+ affecting enzyme activity. This study provides an in-depth understanding of PEBPR systems operation strategy toward environmentally sustainable wastewater treatment.


Asunto(s)
Chlorella , Microbiota , Aguas del Alcantarillado , Fósforo/metabolismo , Reactores Biológicos/microbiología , Bacterias/metabolismo , Nutrientes
9.
Angew Chem Int Ed Engl ; 63(12): e202315628, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38079229

RESUMEN

The LiTaCl6 solid electrolyte has the lowest activation energy of ionic conduction at ambient conditions (0.165 eV), with a record high ionic conductivity for a ternary compound (11 mS cm-1 ). However, the mechanism has been unclear. We train machine-learning force fields (MLFF) on ab initio molecular dynamics (AIMD) data on-the-fly and perform MLFF MD simulations of AIMD quality up to the nanosecond scale at the experimental temperatures, which allows us to predict accurate activation energy for Li-ion diffusion (at 0.164 eV). Detailed analyses of trajectories and vibrational density of states show that the large-amplitude vibrations of Cl- ions in TaCl6 - enable the fast Li-ion transport by allowing dynamic breaking and reforming of Li-Cl bonds across the space in between the TaCl6 - octahedra. We term this process the dynamic-monkey-bar mechanism of superionic Li+ transport which could aid the development of new solid electrolytes for all-solid-state lithium batteries.

10.
BMC Plant Biol ; 23(1): 56, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36698067

RESUMEN

BACKGROUND: Areca palm (Areca catechu) is a woody perennial plant of both economical and medicinal importance grown in tropical and subtropical climates. Yet, the molecular biology study of areca palm is extremely impeded by its unavailability of a transformation method. An efficient protoplast isolation and transformation system could be highly desirable to overcome this barrier. RESULTS: Here, we described a simple and efficient method for protoplast isolation and transformation from the perennial plant areca palm. A high yield of protoplasts (2.5 × 107 protoplasts per gram of fresh leaf tissues) was obtained from the fresh light green leaflet from the newly-emerged leaf digested overnight in the enzyme solution [2% (w/v) cellulase R10, 0.5% (w/v) macerozyme R10, 0.7 M mannitol, 10 mM CaCl2, 20 mM KCl, 20 mM MES and 0.1% (w/v) BSA, pH 5.7] by the direct leaf-peeling method. The isolated areca protoplasts maintain viability of 86.6% and have been successfully transformed with a green fluorescent protein (GFP)-tagged plasmid (pGreen0029-GFP, 6.0 kb) via the polyethylene glycol (PEG)-mediated transformation. Moreover, the mannitol concentration (optimal: 0.7 M) was determined as a key factor affecting areca protoplast isolation. We also demonstrated that the optimal density of areca protoplast for efficient transformation was at 1.0-1.5 × 106 cells/ml. With the optimization of transformation parameters, we have achieved a relatively high transformation efficiency of nearly 50%. CONCLUSION: We have established the first efficient protocol for the high-yield isolation and transformation of areca palm protoplasts. This method shall be applied in various biological studies of areca palm, such as gene function analysis, genome editing, protein trafficking and localization and protein-protein interaction. In addition, the protoplast system offers a great genetic transformation approach for the woody perennial plant-areca palm. Moreover, the established platform may be applied in protoplast isolation and transformation for other important species in the palm family, including oil palm and coconut.


Asunto(s)
Areca , Arecaceae , Protoplastos/metabolismo , Hojas de la Planta
11.
Small ; 19(41): e2302708, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37317018

RESUMEN

Direct air capture (DAC) of CO2 has emerged as the most promising "negative carbon emission" technologies. Despite being state-of-the-art, sorbents deploying alkali hydroxides/amine solutions or amine-modified materials still suffer from unsolved high energy consumption and stability issues. In this work, composite sorbents are crafted by hybridizing a robust metal-organic framework (Ni-MOF) with superbase-derived ionic liquid (SIL), possessing well maintained crystallinity and chemical structures. The low-pressure (0.4 mbar) volumetric CO2 capture assessment and a fixed-bed breakthrough examination with 400 ppm CO2 gas flow reveal high-performance DAC of CO2 (CO2 uptake capacity of up to 0.58 mmol g-1 at 298 K) and exceptional cycling stability. Operando spectroscopy analysis reveals the rapid (400 ppm) CO2 capture kinetics and energy-efficient/fast CO2 releasing behaviors. The theoretical calculation and small-angle X-ray scattering demonstrate that the confinement effect of the MOF cavity enhances the interaction strength of reactive sites in SIL with CO2 , indicating great efficacy of the hybridization. The achievements in this study showcase the exceptional capabilities of SIL-derived sorbents in carbon capture from ambient air in terms of rapid carbon capture kinetics, facile CO2 releasing, and good cycling performance.

12.
New Phytol ; 237(2): 471-482, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36266960

RESUMEN

The development of a series of elite maize hybrids has greatly increased crop yield in the past decades. Parental lines of these hybrids usually come from different heterotic groups and contain many genetic differences. Identifications of important quantitative trait genes in the elite hybrids can extend our understanding of heterosis and also help to guide genetic improvement. Here, we mapped a major quantitative trait locus using a linkage population from an elite maize hybrid Zhengdan958 and identified ZmLNG1 as the causative gene controlling multiple morphologic traits in maize. A 6-kb deletion in one parental line of the hybrid leads to the fusion of ZmLNG1 with its nearby gene. The fusion event prevents the C-terminal of ZmLNG1 from interacting with ZmTON1, which resulted in the change of plant architecture. Further experiments demonstrated that ZmLNG1 could act as a mediator to connect ZmTON1 and ZmOFPs, which belong to another type of plant morphological regulatory proteins, thereby affecting the phosphorylation level of ZmOFPs. These results demonstrate the importance of ZmLNG1 in forming the TON1-TRM-PP2A complex and provide a model for the regulation of plant organ morphology by TON1-recruiting motifs (TRMs) and Ovate family proteins (OFPs).


Asunto(s)
Vigor Híbrido , Zea mays , Zea mays/genética , Sitios de Carácter Cuantitativo , Fenotipo
13.
Opt Express ; 31(3): 3536-3548, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785344

RESUMEN

An analytical method is proposed in this paper to achieve complete energy conversion in sum frequency generation based on the Lewis-Riesenfeld invariants theory. In the proposed scheme, a quasi-adiabatic single control parameter model is established, and the value of single control parameter is selected to make the initial eigenstate perfectly converted to the final eigenstate as needed. Corresponding to the nonlinear frequency conversion process, a nonlinear crystal structure is designed by inverse engineering using the optimal control theory. It is robust against perturbations of the coupling coefficient and phase mismatch, including variations in the pump intensity and crystal polarization period, and achieves almost 100% conversion efficiency at any crystal length. Theoretical simulations show that frequency conversion can be achieved in the wavelength range of 2.6 µm-3.6 µm, and the spectral bandwidth of conversion efficiency exceeds 50% and approaches 400 nm when the crystal length L = 1 mm.

14.
Opt Express ; 31(5): 8375-8383, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36859952

RESUMEN

The integrated optical isolator is an essential building block in photonic integrated chips. However, the performance of on-chip isolators based on the magneto-optic (MO) effect has been limited due to the magnetization requirement of permanent magnets or metal microstrips on MO materials. Here, an MZI optical isolator built on a silicon-on-insulator (SOI) without any external magnetic field is proposed. A multi-loop graphene microstrip operating as an integrated electromagnet above the waveguide, instead of the traditional metal microstrip, generates the saturated magnetic fields required for the nonreciprocal effect. Subsequently, the optical transmission can be tuned by varying the intensity of currents applied on the graphene microstrip. Compared with gold microstrip, the power consumption is reduced by 70.8%, and temperature fluctuation is reduced by 69.5% while preserving the isolation ratio of 29.44 dB and the insertion loss of 2.99 dB at1550 nm.

15.
Opt Lett ; 48(6): 1431-1433, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36946945

RESUMEN

Chalcogenide glass has become one of the essential IR lens materials in passively athermalized long-wave IR devices. However, that there is no multispectral chalcogenide glass capable of large-size fabrication raises challenges to the development and popularization of multispectral imaging systems combining visible, near-IR, and mid-IR. In this work, we developed a novel chalcogenide glass capable of a record-big (Ø120 mm) fabrication through the compositional optimization of GeS2-Ga2S3-CsCl glass with introduction of Sb2S3. Its transmission window is characterized as ranging from 0.51 to 11.2 µm, which means it could be employed as a multispectral lens transmitting visible and IR signals in a co-aperture IR optical system. In addition, a method of three-stage thermal analysis is proposed to evaluate the glass-forming ability of chalcogenide glass through simulating the melt-quenching process of chalcogenide melt in a vacuum-sealed silica ampoule. This work not only shows an innovative multispectral chalcogenide glass with promising applications but also introduces a simple and convenient technique for screening chalcogenide glass with ultrahigh glass-forming ability capable of large-size fabrication.

16.
Nanotechnology ; 34(36)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37192603

RESUMEN

The performance stability of the resistive switching (RS) is vital for a resistive random-access memory device. Here, by inserting a thin HfAlOxlayer between the InGaZnO (IGZO) layer and the bottom Pt electrode, the RS performance in amorphous IGZO memory device is significantly improved. Comparing with a typical metal-insulator-metal structure, the device with HfAlOxlayer exhibits lower switching voltages, faster switching speeds, lower switching energy and lower power consumption. As well, the uniformity of switching voltage and resistance state is also improved. Furthermore, the device with HfAlOxlayer exhibits long retention time (>104s at 85 °C) , high on/off ratio and more than 103cycles of endurance at atmospheric environment. Those substantial improvements in IGZO memory device are attributed to the interface effects with a HfAlOxinsertion layer. With such layer, the formation and rupture locations of Ag conductive filaments are better regulated and confined, thus an improved performance stability.

17.
Appl Opt ; 62(17): 4456-4464, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37707137

RESUMEN

A snapshot imaging spectrometer is a powerful tool for dynamic target tracking and real-time recognition compared with a scanning imaging spectrometer. However, all the current snapshot spectral imaging techniques suffer from a major trade-off between the spatial and spectral resolutions. In this paper, an integral field snapshot imaging spectrometer (TIF-SIS) with a continuously tunable spatial-spectral resolution and light throughput is proposed and demonstrated. The proposed TIF-SIS is formed by a fore optics, a lenslet array, and a collimated dispersive subsystem. Theoretical analyses indicate that the spatial-spectral resolution and light throughput of the system can be continuously tuned through adjusting the F number of the fore optics, the rotation angle of the lenslet array, or the focal length of the collimating lens. Analytical relationships between the spatial and spectral resolutions and the first-order parameters of the system with different geometric arrangements of the lenslet unit are obtained. An experimental TIF-SIS consisting of a self-fabricated lenslet array with a pixelated scale of 100×100 and a fill factor of 0.716 is built. The experimental results show that the spectral resolution of the system can be steadily improved from 4.17 to 0.82 nm with a data cube (N x×N y×N λ) continuously tuned from 35×35×36 to 40×40×183 in the visible wavelength range from 500 to 650 nm, which is consistent with the theoretical prediction. The proposed method for real-time tuning of the spatial-spectral resolution and light throughput opens new possibilities for broader applications, especially for recognition of things with weak spectral signature and biomedical investigations where a high light throughput and tunable resolution are needed.

18.
J Hand Surg Am ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36801118

RESUMEN

PURPOSE: Modified heterodigital neurovascular island flaps and free lateral great toe flaps are dependable methods for treating thumb-tip defects with phalangeal bone exposure. We retrospectively analyzed and compared the details and results of the two methods. METHODS: This retrospective study included 25 patients with thumb injuries with phalangeal bone exposure treated between 2018 and 2021. Patients were categorized as per the following surgical methods: (1) modified heterodigital neurovascular island flap (12 patients, finger flap group) and (2) free lateral great toe flap (13 patients, toe flap group). The Michigan Hand Outcome Questionnaire, aesthetic appearance, Vancouver Scar Scale, Cold Intolerance Severity Score, static 2-point discrimination, Semmes-Weinstein monofilament, and range of motion of the metacarpophalangeal joint of the injured thumb were evaluated and compared. In addition, operation time, hospital stay, return-to-work time, and complications were recorded and compared. RESULTS: In both groups, the defect was successfully repaired, with no cases of complete necrosis. The 2 groups had similar mean scores in static 2-point discrimination, Semmes-Weinstein monofilament, range of motion, and Michigan Hand Outcome Questionnaire scores. The aesthetic appearance, scarring, and cold tolerance of the toe flap group were better than the finger flap group. The operation time, hospital stay, and return-to-work time in the finger flap group were shorter than the toe flap group. The finger flap group had 2 complications-a superficial infection and 1 case of partial flap necrosis. The toe flap group had 3 complications-a superficial infection, 1 case each of partial flap necrosis, and partial skin graft loss. CONCLUSION: Both treatments can achieve satisfactory results; however, they each have advantages and disadvantages. TYPE OF STUDY/LEVEL OF EVIDENCE: Therapeutic IV.

19.
Arch Orthop Trauma Surg ; 143(1): 539-544, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35451641

RESUMEN

INTRODUCTION: To introduce the surgical approach and clinical effect of transferring the partial slips of the flexor digitorum superficialis (FDS) tendon to reconstruct the insertion of the central slip of the extensor tendon (CSET) through an established bone tunnel (BT). MATERIALS AND METHODS: From April 2019 to March 2021, nine patients (six males and three females) with the CSET insertion rupture or defect were admitted to the institution and the CSET insertion was reconstructed with partial tendon slips on both sides of the FDS. The active range of motion of the interphalangeal joint of the affected finger was measured by a goniometer, the degree of pain was evaluated by visual analogue scale (VAS), and the grip strength of the affected limb was measured by an electronic hand dynamometer. RESULTS: The average postoperative follow-up was 12 months. No complications occurred. At the last follow-up, six of the patients were very satisfied and three were satisfied with their recovery. CONCLUSION: The reconstruction of the CSET insertion by transferring the partial tendon slips of the FDS seem to be safe and feasible with minimal invasion to the donor tendon. TYPE OF STUDY/LEVEL OF EVIDENCE: Therapeutic IV.


Asunto(s)
Traumatismos de los Tendones , Tendones , Masculino , Femenino , Humanos , Tendones/cirugía , Dedos/cirugía , Traumatismos de los Tendones/cirugía , Transferencia Tendinosa , Rotura
20.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(1): 149-154, 2023 Feb.
Artículo en Zh | MEDLINE | ID: mdl-36861169

RESUMEN

Acute coronary syndrome (ACS),with increasing mortality year by year,has become a major public health problem in China.Exercise rehabilitation as an important part of the out-of-hospital rehabilitation for the patients with heart diseases can further reduce the mortality of patients on the basis of drug treatment.The available studies have proved that high-intensity interval training (HIIT) is more effective and efficient than moderate-intensity continuous training (MICT) such as walking and jogging on chronic cardiovascular diseases such as heart failure,stable coronary heart disease,and hypertension and has high security.According to the latest research,HIIT can reduce the platelet response,mitigate myocardial ischemia-reperfusion injury,and increase the exercise compliance of ACS patients more significantly than MICT.Moreover,it does not increase the risk of thrombotic adverse events or malignant arrhythmia.Therefore,HIIT is expected to become an important part of exercise prescription in out-of-hospital cardiac rehabilitation strategy for the patients with ACS.


Asunto(s)
Síndrome Coronario Agudo , Rehabilitación Cardiaca , Insuficiencia Cardíaca , Entrenamiento de Intervalos de Alta Intensidad , Humanos , Plaquetas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA