RESUMEN
This study aimed to investigate the effects of the oat hay feeding method and compound probiotics (CMP) on the growth, health, serum antioxidant and immune indicators, rumen fermentation, and bacteria community of dairy calves from 3 to 5 months of age. Forty-eight female Holstein calves (80 ± 7 days of age, 93.71 ± 5.33 kg BW) were selected and randomly divided into four groups. A 2 × 2 factorial design was adopted for the experiment, with the factors of the oat hay feeding method (fed as free-choice or 16.7% in the diet) and compound probiotics (CMP) inclusion (0.15% or 0%) in the pelleted starter. The results showed that, compared with giving oat hay as free-choice, feeding a diet of 16.7% oat hay increased the pelleted starter intake at 1-84 d (p < 0.05), with an average daily gain (ADG) at 61-84 d (p = 0.02); adding CMP to the pelleted starter did not significantly affect body weight, and reduced the fecal index (p < 0.05). Feeding 16.7% oat hay increased the concentration of IgA, IgG, and IgM (p < 0.01), while adding CMP increased the catalase (p < 0.01) and decreased the concentration of malondialdehyde (p < 0.01) in serum. Feeding 16.7% oat hay increased the ruminal concentration of propionic acid (p < 0.05) and isobutyric acid (p = 0.08), and decreased the ruminal pH (p = 0.08), the concentration of acetic acid (p < 0.05), and the ratio of acetic acid to propionic acid (p < 0.01). Feeding 16.7% oat hay reduced the relative abundance of ruminal Firmicutes, Unidentified-Bacteria, Actinobacteria, Prevotella, NK4A214-group, Olsenella, and Actinobacteriota (p < 0.05); adding CMP increased the relative abundance of ruminal Prevotella, Rikenellaceae-RC9-gut-group, Ruminococcus, NK4A214-group, and Ruminococcus (p < 0.05), and decreased the abundance of Desulfobacterora, Prevotella-7, and Erysipelotricaceae-UCG-002 (p < 0.05). In conclusion, feeding a diet of 16.7% oat hay increased the pelleted starter intake and average daily gain, while slightly reducing the ruminal pH values; adding CMP to the pelleted starter resulted in reduced diarrhea incidence, increased serum antioxidant capacity and immunity, as well as ruminal richness and diversity of microorganisms in dairy calves from 3 to 5 months of age.
RESUMEN
Melanocortin 1 receptor (MC1R) gene regulates pigment synthesis in mammals, and therefore is regarded as an important candidate gene for dog coat color. Based on MC1R amino acids and cDNA sequences of 10 vertebrate animals released by NCBI, molecular evolution of dog MC1R gene was analyzed with bioinformatic software and internet resource. Results showed that 10 vertebrate animals were divided into two major groups, a compact group A (7 mammals) and an incompact group B (chicken, zebrafish and fugu). This phylogenetic tree was consistent with putative evolutionary relationship within these 10 species. Positive selection was detected during the evolutionary process of dog (also cat and pig) from cattle by PAML branch model (omega = 90.8177), and five amino acids of 2V, 25E, 184N, 197V and 314L of dog MC1R were predicted under positive selection by site model. Comparative linkage analysis of chromosome showed that "ZFP276-MC1R-GAS8" linkage group was conservative in human, chimpanzee, chicken and dog.