Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.334
Filtrar
2.
Nature ; 587(7834): 466-471, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33116313

RESUMEN

Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes-in particular the ECM protease ADAMTS4-and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections.


Asunto(s)
Proteína ADAMTS4/metabolismo , Fibroblastos/enzimología , Fibroblastos/patología , Virus de la Influenza A/patogenicidad , Pulmón/patología , Pulmón/fisiopatología , Proteína ADAMTS4/antagonistas & inhibidores , Animales , Aves/virología , Matriz Extracelular/enzimología , Perfilación de la Expresión Génica , Humanos , Gripe Aviar/virología , Gripe Humana/patología , Gripe Humana/terapia , Gripe Humana/virología , Interferones/inmunología , Interferones/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Pulmón/enzimología , Pulmón/virología , Ratones , Síndrome de Dificultad Respiratoria/enzimología , Síndrome de Dificultad Respiratoria/fisiopatología , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/virología , Estaciones del Año , Análisis de la Célula Individual , Células del Estroma/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(51): e2311276120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38079547

RESUMEN

Although the tremendous progress has been made for mRNA delivery based on classical cationic carriers, the excess cationic charge density of lipids was necessary to compress mRNA through electrostatic interaction, and with it comes inevitably adverse events including the highly inflammatory and cytotoxic effects. How to develop the disruptive technologies to overcome cationic nature of lipids remains a major challenge for safe and efficient mRNA delivery. Here, we prepared noncationic thiourea lipids nanoparticles (NC-TNP) to compress mRNA by strong hydrogen bonds interaction between thiourea groups of NC-TNP and the phosphate groups of mRNA, abandoning the hidebound and traditional electrostatic force to construct mRNA-cationic lipids formulation. NC-TNP was a delivery system for mRNA with simple, convenient, and repeatable preparation technology and showed negligible inflammatory and cytotoxicity side effects. Furthermore, we found that NC-TNP could escape the recycling pathway to inhibit the egress of internalized nanoparticles from the intracellular compartment to the extracellular milieu which was a common fact in mRNA-LNP (lipid nanoparticles) formulation. Therefore, NC-TNP-encapsulated mRNA showed higher gene transfection efficiency in vitro and in vivo than mRNA-LNP formulation. Unexpectedly, NC-TNP showed spleen targeting delivery ability with higher accumulation ratio (spleen/liver), compared with traditional LNP. Spleen-targeting NC-TNP with mRNA exhibited high mRNA-encoded antigen expression in spleen and elicited robust immune responses. Overall, our work establishes a proof of concept for the construction of a noncationic system for mRNA delivery with good inflammatory safety profiles, high gene transfection efficiency, and spleen-targeting delivery to induce permanent and robust humoral and cell-mediated immunity for disease treatments.


Asunto(s)
Biomimética , Nanopartículas , ARN Mensajero/metabolismo , Lípidos/química , Nanopartículas/química , Cationes/química , Tiourea , ARN Interferente Pequeño/genética
4.
Proc Natl Acad Sci U S A ; 120(22): e2218040120, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216512

RESUMEN

Electrochemical CO2 reduction provides a potential means for synthesizing value-added chemicals over the near equilibrium potential regime, i.e., formate production on Pd-based catalysts. However, the activity of Pd catalysts has been largely plagued by the potential-depended deactivation pathways (e.g., [Formula: see text]-PdH to [Formula: see text]-PdH phase transition, CO poisoning), limiting the formate production to a narrow potential window of 0 V to -0.25 V vs. reversible hydrogen electrode (RHE). Herein, we discovered that the Pd surface capped with polyvinylpyrrolidone (PVP) ligand exhibits effective resistance to the potential-depended deactivations and can catalyze formate production at a much extended potential window (beyond -0.7 V vs. RHE) with significantly improved activity (~14-times enhancement at -0.4 V vs. RHE) compared to that of the pristine Pd surface. Combined results from physical and electrochemical characterizations, kinetic analysis, and first-principle simulations suggest that the PVP capping ligand can effectively stabilize the high-valence-state Pd species (Pdδ+) resulted from the catalyst synthesis and pretreatments, and these Pdδ+ species are responsible for the inhibited phase transition from [Formula: see text]-PdH to [Formula: see text]-PdH, and the suppression of CO and H2 formation. The present study confers a desired catalyst design principle, introducing positive charges into Pd-based electrocatalyst to enable efficient and stable CO2 to formate conversion.

5.
Plant J ; 118(6): 1864-1871, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38470090

RESUMEN

The production of compact vectors for gene stacking is hindered by a lack of effective linkers. Here, we report that a 26-nt nucleic acid linker, NAL1, from the fungus Glarea lozoyensis and its truncated derivatives could connect two genes as a bicistron, enabling independent translation in a maize protoplast transient expression system and human 293 T cells. The optimized 9-nt NAL10 linker was then used to connect four genes driven by a bidirectional promoter; this combination was successfully used to reconstruct the astaxanthin biosynthesis pathway in transgenic maize. The short and efficient nucleic acid linker NAL10 can be widely used in multi-gene expression and synthetic biology in animals and plants.


Asunto(s)
Plantas Modificadas Genéticamente , Biología Sintética , Zea mays , Biología Sintética/métodos , Zea mays/genética , Zea mays/metabolismo , Humanos , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Células HEK293 , Xantófilas/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Animales , Ácidos Nucleicos/genética , Expresión Génica , Vectores Genéticos/genética , Protoplastos/metabolismo
6.
Exp Cell Res ; 438(2): 114056, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663475

RESUMEN

It was reported that within the head and neck cancer (HNC) cell line CAL21 the epithelial-mesenchymal transition (EMT) and cell proliferation were promoted by Urokinase-Type Plasminogen Activator (PLAU) proteinase through TNFRSF12A. Additionally, in this paper HNC cell lines refer to Fadu and Tu686. A novel PLAU-STAT3 axis was found to be involved in HNC cell line proliferation and metastasis. PLAU expression in HNC samples was upregulated, besides, the elevated expression of PLAU was linked to the lower overall survival (OS) and disease-free survival (DFS). Ectopic PLAU expression promoted cell proliferation and migration, while PLAU knockdown exhibited opposite results. RNA-seq data identified the JAK-STAT signaling pathway, confirmed by western blotting. A recovery assay using S3I-201, a selective inhibitor of signal transducer and activator of transcription 3 (STAT3), indicated that PLAU promoted HNC cell line progression via STAT3 signaling in vitro. The oncogenic role of PLAU in HNC tumor growth in vivo was confirmed using xenograft models. In summary, we identified the tumorigenic PLAU function in the HNC progress. PLAU may represent a potential prognostic biomarker of HNC and the PLAU-STAT3 pathway might be considered a therapeutic target of HNC.


Asunto(s)
Movimiento Celular , Proliferación Celular , Neoplasias de Cabeza y Cuello , Factor de Transcripción STAT3 , Transducción de Señal , Activador de Plasminógeno de Tipo Uroquinasa , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/genética , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Chem Soc Rev ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39400237

RESUMEN

Autocatalysis, a self-sustained replication process where at least one of the products functions as a catalyst, plays a pivotal role in life's evolution, from genome duplication to the emergence of autocatalytic subnetworks in cell division and metabolism. Leveraging their programmability, controllability, and rich functionalities, DNA molecules have become a cornerstone for engineering autocatalytic circuits, driving diverse technological applications. In this tutorial review, we offer a comprehensive survey of recent advances in engineering autocatalytic DNA circuits and their practical implementations. We delve into the fundamental principles underlying the construction of these circuits, highlighting their reliance on DNAzyme biocatalysis, enzymatic catalysis, and dynamic hybridization assembly. The discussed autocatalytic DNA circuitry techniques have revolutionized ultrasensitive sensing of biologically significant molecules, encompassing genomic DNAs, RNAs, viruses, and proteins. Furthermore, the amplicons produced by these circuits serve as building blocks for higher-order DNA nanostructures, facilitating biomimetic behaviors such as high-performance intracellular bioimaging and precise algorithmic assembly. We summarize these applications and extensively address the current challenges, potential solutions, and future trajectories of autocatalytic DNA circuits. This review promises novel insights into the advancement and practical utilization of autocatalytic DNA circuits across bioanalysis, biomedicine, and biomimetics.

8.
Nano Lett ; 24(37): 11573-11580, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39225423

RESUMEN

Lysosome-targeting chimera (LYTAC) shows great promise for protein-based therapeutics by targeted degradation of disease-associated membrane or extracellular proteins, yet its efficiency is constrained by the limited binding affinity between LYTAC reagents and designated proteins. Here, we established a programmable and multivalent LYTAC system by tandem assembly of DNA into a high-affinity protein degrader, a heterodimer aptamer nanostructure targeting both pathogenic membrane protein and lysosome-targeting receptor (insulin-like growth factor 2 receptor, IGF2R) with adjustable spatial distribution or organization pattern. The DNA-based multivalent LYTACs showed enhanced efficacy in removing immune-checkpoint protein programmable death-ligand 1 (PD-L1) and vascular endothelial growth factor receptor 2 (VEGFR2) in tumor cell membrane that respectively motivated a significant increase in T cell activity and a potent effect on cancer cell growth inhibition. With high programmability and versatility, this multivalent LYTAC system holds considerable promise for realizing protein therapeutics with enhanced activity.


Asunto(s)
Aptámeros de Nucleótidos , Lisosomas , Humanos , Lisosomas/metabolismo , Aptámeros de Nucleótidos/química , Línea Celular Tumoral , Nanoestructuras/química , ADN/química , ADN/metabolismo , Antígeno B7-H1/metabolismo , Receptor IGF Tipo 2/metabolismo , Receptor IGF Tipo 2/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteolisis
9.
Nano Lett ; 24(22): 6465-6473, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38767853

RESUMEN

Neutrophilic superhalide-anion-triggered chalcogen conversion-based Zn batteries, despite latent high-energy merit, usually suffer from a short lifespan caused by dendrite growth and shuttle effect. Here, a superhalide-anion-motivator reforming strategy is initiated to simultaneously manipulate the anode interface and Se conversion intermediates, realizing a bipolar regulation toward longevous energy-type Zn batteries. With ZnF2 chaotropic additives, the original large-radii superhalide zincate anion species in ionic liquid (IL) electrolytes are split into small F-containing species, boosting the formation of robust solid electrolyte interphases (SEI) for Zn dendrite inhibition. Simultaneously, ion radius reduced multiple F-containing Se conversion intermediates form, enhancing the interion interaction of charged products to suppress the shuttle effect. Consequently, Zn||Se batteries deliver a ca. 20-fold prolonged lifespan (2000 cycles) at 1 A g-1 and high energy/power density of 416.7 Wh kgSe-1/1.89 kW kgSe-1, outperforming those in F-free counterparts. Pouch cells with distinct plateaus and durable cyclability further substantiate the practicality of this design.

10.
Stroke ; 55(1): 92-100, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38018834

RESUMEN

BACKGROUND: Both genetic factors and environmental air pollution contribute to the risk of stroke. However, it is unknown whether the association between air pollution and stroke risk is influenced by the genetic susceptibilities of stroke and its risk factors. METHODS: This prospective cohort study included 40 827 Chinese adults without stroke history. Satellite-based monthly fine particulate matter (PM2.5) estimation at 1-km resolution was used for exposure assessment. Based on 534 identified genetic variants from genome-wide association studies in East Asians, we constructed 6 polygenic risk scores for stroke and its risk factors, including atrial fibrillation, blood pressure, type 2 diabetes, body mass index, and triglyceride. The Cox proportional hazards model was applied to evaluate the hazard ratios and 95% CIs for the associations of PM2.5 and polygenic risk score with incident stroke and the potential effect modifications. RESULTS: Over a median follow-up of 12.06 years, 3147 incident stroke cases were documented. Compared with the lowest quartile of PM2.5 exposure, the hazard ratio (95% CI) for stroke in the highest quartile group was 2.72 (2.42-3.06). Among individuals at high genetic risk, the relative risk of stroke was 57% (1.57; 1.40-1.76) higher than those at low genetic risk. Although no statistically significant interaction was found, participants with both the highest PM2.5 and high genetic risk showed the highest risk of stroke, with ≈4× that of the lowest PM2.5 and low genetic risk group (hazard ratio, 3.55 [95% CI, 2.84-4.44]). Similar upward gradients were observed in the risk of stroke when assessing the joint effects of PM2.5 and genetic risks of blood pressure, type 2 diabetes, body mass index, atrial fibrillation, and triglyceride. CONCLUSIONS: Long-term exposure to PM2.5 was associated with a higher risk of incident stroke across different genetic susceptibilities. Our findings highlighted the great importance of comprehensive assessment of air pollution and genetic risk in the prevention of stroke.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Fibrilación Atrial , Diabetes Mellitus Tipo 2 , Accidente Cerebrovascular , Adulto , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , Estudios Prospectivos , Fibrilación Atrial/complicaciones , Estudio de Asociación del Genoma Completo , Exposición a Riesgos Ambientales/efectos adversos , Incidencia , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/inducido químicamente , Contaminación del Aire/efectos adversos , Factores de Riesgo , Predisposición Genética a la Enfermedad , Triglicéridos , Contaminantes Atmosféricos/efectos adversos
11.
Stroke ; 55(8): 2066-2074, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39038095

RESUMEN

BACKGROUND: Previous studies focusing on assessing the effects of remnant cholesterol (RC) and low-density lipoprotein cholesterol (LDL-C) on stroke may not consider their mutual influence. We aimed to explore the associations of RC and discordant high RC with LDL-C with stroke, ischemic stroke (IS), and hemorrhagic stroke. METHODS: This prospective cohort study was conducted based on 3 cohorts of the China-PAR (Prediction for Atherosclerotic Cardiovascular Disease Risk in China) project. RC was calculated as non-high-density lipoprotein cholesterol minus LDL-C estimated by Martin/Hopkins equations. Concordant/discordant categories for RC versus LDL-C were determined based on cut-points of 130 mg/dL for LDL-C and equivalent percentile (32.50 mg/dL) for RC. Cox models were used to estimate adjusted hazard ratios and 95% CIs for incident stroke. RESULTS: Among 113 448 participants recruited at baseline, a total of 98 967 participants were eligible for the final analysis (mean age of 51.44 years; 40.45% were men). During 728 776.87 person-years of follow-up, 2859 stroke cases, 1811 IS cases, and 849 hemorrhagic stroke cases were observed. RC was positively associated with stroke and IS, but not hemorrhagic stroke, with adjusted hazard ratios (95% CIs) of 1.06 (1.02-1.10), 1.09 (1.04-1.13), and 0.95 (0.88-1.03) for per SD increase in RC. Compared with low LDL-C/low RC group, low LDL-C/high RC group had higher risks of stroke (adjusted hazard ratio, 1.15 [95% CI, 1.02-1.30]) and IS (1.19, 1.03-1.38), while high LDL-C/low RC group had no increased risk of stroke (1.07 [0.95-1.20]) and IS (1.09 [0.94-1.25]). CONCLUSIONS: Higher RC was associated with increased risks of stroke and IS but not hemorrhagic stroke. Discordantly high RC, not discordantly high LDL-C, conferred higher risks of stroke and IS. Our findings support further lowering RC by interventions to reduce residual IS risk.


Asunto(s)
LDL-Colesterol , Colesterol , Accidente Cerebrovascular , Humanos , Masculino , Persona de Mediana Edad , Femenino , LDL-Colesterol/sangre , Estudios Prospectivos , China/epidemiología , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/sangre , Colesterol/sangre , Adulto , Factores de Riesgo , Estudios de Cohortes , Anciano , Accidente Cerebrovascular Isquémico/epidemiología , Accidente Cerebrovascular Isquémico/sangre , Accidente Cerebrovascular Hemorrágico/epidemiología , Accidente Cerebrovascular Hemorrágico/sangre , Triglicéridos/sangre , Pueblos del Este de Asia
12.
J Am Chem Soc ; 146(29): 20508-20517, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38996190

RESUMEN

Zinc trifluorosulfonate [Zn(OTf)2] is considered as the most suitable zinc salt for aqueous Zn-ion batteries (AZIBs) but cannot support the long-term cycling of the Zn anode. Here, we reveal the micelle-like structure of the Zn(OTf)2 electrolyte and reunderstand the failing mechanism of the Zn anode. Since the solvated Zn2+ possesses a positive charge, it can spontaneously attract OTf- with the hydrophilic group of -SO3 and the hydrophobic group of -CF3 via electrostatic interaction and form a "micelle-like" structure, which is responsible for the poor desolvation kinetics and dendrite growth. To address these issues, an antimicelle-like structure is designed by using ethylene glycol monomethyl ether (EGME) as a cosolvent for highly reversible AZIBs. The modified electrolyte shows lower dissociation ability to Zn(OTf)2 and higher coordination tendency with Zn2+ compared to the Zn(OTf)2 electrolyte, resulting in the unique solvation structure of Zn2+(H2O)1.2(OTf-)2(EGME)2.8, which significantly reduces the charge of micelle, damages the micelle-like structure, and boosts the desolvation kinetics. Moreover, the reduction of EGME and OTf- can form a robust dual-layered SEI with high Zn2+ ion conductivity. Consequently, the Zn/Cu asymmetric coin cell using ZT-EGME can work at a high rate and a capacity of 50 mA cm-2 and 5 mA h cm-2 for more than 120 cycles, while its counterparts using ZT can barely work. Moreover, a 505.1 mA h pouch cell with practical parameters including a lean electrolyte supply of 15 mL A h-1 and an N/P ratio of ∼3.5 can work for 50 cycles.

13.
Int J Cancer ; 155(11): 2080-2093, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39129048

RESUMEN

Bacteria are ideal anticancer agents and carriers due to their unique capabilities that are convenient in genetic manipulation, tumor-specific targeting, and deep-tissue penetration. However, the specific molecular mechanisms of bacteria-mediated cancer therapy (BMCT) have not been clarified. In this study, we found that TLR4 signaling pathway is critical for Salmonella-mediated tumor targeting, tumor suppression, and liver and spleen protection. TLR4 knockout in mice decreased the levels of cytokines and chemokines, such as S100a8, S100a9, TNF-α, and IL-1ß, in tumor microenvironments (TMEs) after Salmonella treatment, which inhibited tumor cell death and nutrient release, led to reduced bacterial contents in tumors and attenuated antitumor efficacy in a negative feedback manner. Importantly, we found that S100a8 and S100a9 played a leading role in Salmonella-mediated cancer therapy (SMCT). The antitumor efficacy was abrogated and liver damage was prominent when blocked with a specific inhibitor. These findings elucidated the mechanism of Salmonella-mediated tumor targeting, suppression, and host antibacterial defense, providing insights into clinical cancer therapeutics.


Asunto(s)
Calgranulina A , Calgranulina B , Lipopolisacáridos , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Calgranulina B/metabolismo , Calgranulina B/genética , Calgranulina A/metabolismo , Ratones , Ratones Noqueados , Transducción de Señal , Microambiente Tumoral , Humanos , Ratones Endogámicos C57BL , Línea Celular Tumoral , Salmonella/metabolismo , Neoplasias/microbiología , Neoplasias/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia
14.
Anal Chem ; 96(14): 5560-5569, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38529650

RESUMEN

Catalytic DNA circuits are desirable for sensitive bioimaging in living cells; yet, it remains a challenge to monitor these intricate signal communications because of the uncontrolled circuitry leakage and insufficient cell selectivity. Herein, a simple yet powerful DNA-repairing enzyme (APE1) activation strategy is introduced to achieve the site-specific exposure of a catalytic DNA circuit for realizing the selectively amplified imaging of intracellular microRNA and robust evaluation of the APE1-involved drug resistance. Specifically, the circuitry reactants are firmly blocked by the enzyme recognition/cleavage site to prevent undesirable off-site circuitry leakage. The caged DNA circuit has no target-sensing activity until its circuitry components are activated via the enzyme-mediated structural reconstitution and finally transduces the amplified fluorescence signal within the miRNA stimulation. The designed DNA circuit demonstrates an enhanced signal-to-background ratio of miRNA assay as compared with the conventional DNA circuit and enables the cancer-cell-selective imaging of miRNA. In addition, it shows robust sensing performance in visualizing the APE1-mediated chemoresistance in living cells, which is anticipated to achieve in-depth clinical diagnosis and chemotherapy research.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , MicroARNs , Neoplasias , Humanos , MicroARNs/genética , MicroARNs/química , ADN Catalítico/química , Hibridación de Ácido Nucleico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , ADN/química , Técnicas Biosensibles/métodos
15.
Anal Chem ; 96(23): 9666-9675, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38815126

RESUMEN

Epigenetic modification plays an indispensable role in regulating routine molecular signaling pathways, yet it is rarely used to modulate molecular self-assembly networks. Herein, we constructed a bioorthogonal demethylase-stimulated DNA circuitry (DSC) system for high-fidelity imaging of microRNA (miRNA) in live cells and mice by eliminating undesired off-site signal leakage. The simple and robust DSC system is composed of a primary cell-specific circuitry regulation (CR) module and an ultimate signal-transducing amplifier (SA) module. After the modularly designed DSC system was delivered into target live cells, the DNAzyme of the CR module was site-specifically activated by endogenous demethylase to produce fuel strands for the subsequent miRNA-targeting SA module. Through the on-site and multiply guaranteed molecular recognitions, the lucid yet efficient DSC system realized the reliably amplified in vivo miRNA sensing and enabled the in-depth exploration of the demethylase-involved signal pathway with miRNA in live cells. Our bioorthogonally on-site-activated DSC system represents a universal and versatile biomolecular sensing platform via various demethylase regulations and shows more prospects for more different personalized theragnostics.


Asunto(s)
ADN Catalítico , MicroARNs , MicroARNs/análisis , MicroARNs/metabolismo , ADN Catalítico/metabolismo , ADN Catalítico/química , Animales , Ratones , Humanos , Metilación de ADN , Imagen Óptica
16.
BMC Plant Biol ; 24(1): 3, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163880

RESUMEN

BACKGROUND: Yellow Stripe-Like (YSL) proteins are involved in the uptake and transport of metal ions. They play important roles in maintaining the zinc and iron homeostasis in Arabidopsis, rice (Oryza sativa), and barley (Hordeum vulgare). However, proteins in this family have not been fully identified and comprehensively analyzed in maize (Zea mays L.). RESULTS: In this study, we identified 19 ZmYSLs in the maize genome and analyzed their structural features. The results of a phylogenetic analysis showed that ZmYSLs are homologous to YSLs of Arabidopsis and rice, and these proteins are divided into four independent branches. Although their exons and introns have structural differences, the motif structure is relatively conserved. Analysis of the cis-regulatory elements in the promoters indicated that ZmYSLs might play a role in response to hypoxia and light. The results of RNA sequencing and quantitative real-time PCR analysis revealed that ZmYSLs are expressed in various tissues and respond differently to zinc and iron deficiency. The subcellular localization of ZmYSLs in the protoplast of maize mesophyll cells showed that they may function in the membrane system. CONCLUSIONS: This study provided important information for the further functional analysis of ZmYSL, especially in the spatio-temporal expression and adaptation to nutrient deficiency stress. Our findings provided important genes resources for the maize biofortification.


Asunto(s)
Arabidopsis , Hierro , Hierro/metabolismo , Zinc/metabolismo , Zea mays/metabolismo , Arabidopsis/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
17.
BMC Plant Biol ; 24(1): 796, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39174961

RESUMEN

BACKGROUND: Abiotic stress seriously affects the growth and yield of crops. It is necessary to search and utilize novel abiotic stress resistant genes for 2.0 breeding programme in quinoa. In this study, the impact of drought stress on glucose metabolism were investigated through transcriptomic and metabolomic analyses in quinoa seeds. Candidate drought tolerance genes on glucose metabolism pathway were verified by qRT-PCR combined with yeast expression system. RESULTS: From 70 quinoa germplasms, drought tolerant material M059 and drought sensitive material M024 were selected by comprehensive evaluation of drought resistance. 7042 differentially expressed genes (DEGs) were indentified through transcriptomic analyses. Gene Ontology (GO) analysis revealed that these DEGs were closely related to carbohydrate metabolic process, phosphorus-containing groups, and intracellular membrane-bounded organelles. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis detected that DEGs were related to pathways involving carbohydrate metabolisms, glycolysis and gluconeogenesis. Twelve key differentially accumulated metabolites (DAMs), (D-galactose, UDP-glucose, succinate, inositol, D-galactose, D-fructose-6-phosphate, D-glucose-6-phosphate, D-glucose-1-phosphate, dihydroxyacetone phosphate, ribulose-5-phosphate, citric acid and L-malate), and ten key candidate DEGs (CqAGAL2, CqINV, CqFrK7, CqCELB, Cqbg1x, CqFBP, CqALDO, CqPGM, CqIDH3, and CqSDH) involved in drought response were identified. CqSDH, CqAGAL2, and Cqß-GAL13 were candidate genes that have been validated in both transcriptomics and yeast expression screen system. CONCLUSION: These findings provide a foundation for elucidating the molecular regulatory mechanisms governing glucose metabolism in quinoa seeds under drought stress, providing insights for future research exploring responses to drought stress in quinoa.


Asunto(s)
Chenopodium quinoa , Sequías , Glucosa , Semillas , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Chenopodium quinoa/fisiología , Glucosa/metabolismo , Semillas/metabolismo , Semillas/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Perfilación de la Expresión Génica , Metabolismo de los Hidratos de Carbono/genética
18.
BMC Plant Biol ; 24(1): 203, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509491

RESUMEN

BACKGROUND: Quinoa leaves demonstrate a diverse array of colors, offering a potential enhancement to landscape aesthetics and the development of leisure-oriented sightseeing agriculture in semi-arid regions. This study utilized integrated transcriptomic and metabolomic analyses to investigate the mechanisms underlying anthocyanin synthesis in both emerald green and pink quinoa leaves. RESULTS: Integrated transcriptomic and metabolomic analyses indicated that both flavonoid biosynthesis pathway (ko00941) and anthocyanin biosynthesis pathway (ko00942) were significantly associated with anthocyanin biosynthesis. Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were analyzed between the two germplasms during different developmental periods. Ten DEGs were verified using qRT-PCR, and the results were consistent with those of the transcriptomic sequencing. The elevated expression of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), 4-coumarate CoA ligase (4CL) and Hydroxycinnamoyltransferase (HCT), as well as the reduced expression of flavanone 3-hydroxylase (F3H) and Flavonol synthase (FLS), likely cause pink leaf formation. In addition, bHLH14, WRKY46, and TGA indirectly affected the activities of CHS and 4CL, collectively regulating the levels of cyanidin 3-O-(3'', 6''-O-dimalonyl) glucoside and naringenin. The diminished expression of PAL, 4CL, and HCT decreased the formation of cyanidin-3-O-(6"-O-malonyl-2"-O-glucuronyl) glucoside, leading to the emergence of emerald green leaves. Moreover, the lowered expression of TGA and WRKY46 indirectly regulated 4CL activity, serving as another important factor in maintaining the emerald green hue in leaves N1, N2, and N3. CONCLUSION: These findings establish a foundation for elucidating the molecular regulatory mechanisms governing anthocyanin biosynthesis in quinoa leaves, and also provide some theoretical basis for the development of leisure and sightseeing agriculture.


Asunto(s)
Antocianinas , Chenopodium quinoa , Antocianinas/metabolismo , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Glucósidos , Regulación de la Expresión Génica de las Plantas
19.
Small ; 20(2): e2305672, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670211

RESUMEN

The sensing performance of DNAzymes in live cells is tremendously hampered by the inefficient and inhomogeneous delivery of DNAzyme probes and their incontrollable off-site activation, originating from their susceptibility to nuclease digestion. This requires the development of a more compact and robust DNAzyme-delivering system with site-specific DNAzyme activation property. Herein, a highly compact and robust Zn@DDz nanoplatform is constructed by integrating the unimolecular microRNA-responsive DNA-cleaving DNAzyme (DDz) probe with the requisite DNAzyme Zn2+ -ion cofactors, and the amplified intracellular imaging of microRNA via the spatiotemporally programmed disassembly of Zn@DDz nanoparticles is achieved. The multifunctional Zn@DDz nanoplatform is simply composed of a structurally blocked self-hydrolysis DDz probe and the inorganic Zn2+ -ion bridge, with high loading capacity, and can effectively deliver the initially catalytic inert DDz probe and Zn2+ into living cells with enhanced stabilities. Upon their entry into the acidic microenvironment of living cells, the self-sufficient Zn@DDz nanoparticle is disassembled to release DDz probe and simultaneously supply Zn2+ -ion cofactors. Then, endogenous microRNA-21 catalyzes the reconfiguration and activation of DDz for generating the amplified readout signal with multiply guaranteed imaging performance. Thus, this work paves an effective way for promoting DNAzyme-based biosensing systems in living cells, and shows great promise in clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , MicroARNs , Nanopartículas , ADN
20.
Small ; : e2405694, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246246

RESUMEN

Solar thermal collectors based on phase change materials (PCMs) are important to promote the civilian use of sustainable energy. However, simultaneously achieving high photothermal efficiency and rapid heat transfer of the PCM carrier typically involves a high proportion of functional materials, contradicting a satisfying energy storage density. In this work, a surface-engineered anisotropic MXene-based aerogel (LMXA) integrated with myristic acid (MA) to produce phase change composites (LMXA-MA) is reported, in which the laser-treated surface composed of the hierarchically-structured TiO2/carbon composites act as a light absorber to improve solar absorption (96.0%), while the vertical through-hole structure allows for fast thermal energy transportation from surface to the whole. As a result, LMXA-MA exhibits outstanding thermal energy storage (192.4 J·g-1) and high photothermal conversion efficiency (93.5%). Meanwhile, benefiting from the intrinsic low emissivity of MXene material, thermal radiation loss can be effectively suppressed by simply flipping LMXA-MA, enabling a long-term temperature control ability (605 s·g-1). The excellent heat storage property and switchable dual-mode also endow it with an infrared stealth function, which maintains camouflage for more than 240 s. This work provides a prospective solution for optimizing photothermal conversion efficiency and long-term thermal energy preservation from surface engineering and structural design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA