Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35588250

RESUMEN

Although lengthening of the cell cycle and G1 phase is a generic feature of tissue maturation during development, the underlying mechanism remains poorly understood. Here, we develop a time-lapse imaging strategy to measure the four cell cycle phases in single chick neural progenitor cells in their endogenous environment. We show that neural progenitors are widely heterogeneous with respect to cell cycle length. This variability in duration is distributed over all phases of the cell cycle, with the G1 phase contributing the most. Within one cell cycle, each phase duration appears stochastic and independent except for a correlation between S and M phase duration. Lineage analysis indicates that the majority of daughter cells may have a longer G1 phase than mother cells, suggesting that, at each cell cycle, a mechanism lengthens the G1 phase. We identify that the CDC25B phosphatase known to regulate the G2/M transition indirectly increases the duration of the G1 phase, partly through delaying passage through the restriction point. We propose that CDC25B increases the heterogeneity of G1 phase length, revealing a previously undescribed mechanism of G1 lengthening that is associated with tissue development.


Asunto(s)
Células-Madre Neurales , Ciclo Celular/fisiología , División Celular , Fase G1/fisiología , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
2.
BMC Cancer ; 18(1): 221, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29482519

RESUMEN

BACKGROUND: Cancer cell aggregation is a key process involved in the formation of clusters of circulating tumor cells. We previously reported that cell-cell adhesion proteins, such as E-cadherin, and desmosomal proteins are involved in cell aggregation to form clusters independently of cell migration or matrix adhesion. Here, we investigated the involvement of gap junction intercellular communication (GJIC) during anchorage-independent clustering of MCF7 breast adenocarcinoma cells. METHODS: We used live cell image acquisition and analysis to monitor the kinetics of MCF7 cell clustering in the presence/absence of GJIC pharmacological inhibitors and to screen a LOPAC® bioactive compound library. We also used a calcein transfer assay and flow cytometry to evaluate GJIC involvement in cancer cell clustering. RESULTS: We first demonstrated that functional GJIC are established in the early phase of cancer cell aggregation. We then showed that pharmacological inhibition of GJIC using tonabersat and meclofenamate delayed MCF7 cell clustering and reduced calcein transfer. We also found that brefeldin A, an inhibitor of vesicular trafficking, which we identified by screening a small compound library, and latrunculin A, an actin cytoskeleton-disrupting agent, both impaired MCF7 cell clustering and calcein transfer. CONCLUSIONS: Our results demonstrate that GJIC are involved from the earliest stages of anchorage-independent cancer cell aggregation. They also give insights into the regulatory mechanisms that could modulate the formation of clusters of circulating tumor cells.


Asunto(s)
Adenocarcinoma/fisiopatología , Neoplasias de la Mama/fisiopatología , Comunicación Celular , Uniones Comunicantes , Adenocarcinoma/metabolismo , Antígenos CD , Neoplasias de la Mama/metabolismo , Cadherinas , Adhesión Celular , Movimiento Celular , Femenino , Humanos , Células MCF-7
3.
J Theor Biol ; 454: 102-109, 2018 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-29775683

RESUMEN

BACKGROUND: Since several decades, the experiments have highlighted the analogy of fusing cell aggregates with liquid droplets. The physical macroscopic models have been derived under incompressible assumptions. The aim of this paper is to provide a 3D model of growing spheroids, which is more relevant regarding embryo cell aggregates or tumor cell spheroids. METHODS: We extend the past approach to a compressible 3D framework in order to account for the tumor spheroid growth. We exhibit the crucial importance of the effective surface tension, and of the inner pressure of the spheroid to describe precisely the fusion. The experimental data were obtained on spheroids of colon carcinoma human cells (HCT116 cell line). After 3 or 6 days of culture, two identical spheroids were transferred in one well and their fusion was monitored by live videomicroscopy acquisition each 2 h during 72 h. From these images the neck radius and the diameter of the assembly of the fusing spheroids are extracted. RESULTS: The numerical model is fitted with the experiments. It is worth noting that the time evolution of both neck radius and spheroid diameter are quantitatively obtained. The interesting feature lies in the fact that such measurements characterise the macroscopic rheological properties of the tumor spheroids. CONCLUSIONS: The experimental determination of the kinetics of neck radius and overall diameter during spheroids fusion characterises the rheological properties of the spheroids. The consistency of the model is shown by fitting the model with two different experiments, enhancing the importance of both surface tension and cell proliferation. GENERAL SIGNIFICANCE: The paper sheds new light on the macroscopic rheological properties of tumor spheroids. It emphasizes the role of the surface tension and the inner pressure in the fusion of growing spheroid. Under geometrical assumptions, the model reduces to a 2-parameter differential equation fit with experimental measurements. The 3-D partial differential system makes it possible to study the fusion of spheroids in non-symmetrical or more general frameworks.


Asunto(s)
Proliferación Celular , Modelos Teóricos , Neoplasias/patología , Esferoides Celulares/patología , Esferoides Celulares/fisiología , Fusión Celular , Células HCT116 , Humanos , Cinética , Neoplasias/fisiopatología , Reología , Tensión Superficial , Sustancias Viscoelásticas/metabolismo
4.
J Math Biol ; 77(4): 1073-1092, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29736873

RESUMEN

Biological tissues accumulate mechanical stress during their growth. The mere measurement of the stored stress is not an easy task. We address here the spherical case and our experiments consist in performing an incision of a spherical microtissue (tumor spheroid) grown in vitro. On the theoretical part we derive a compatibility condition on the stored stress in spherical symmetry, which imposes a relation between the circumferential and radial stored stress. The numerical implementation uses the hyperelastic model of Ciarlet and Geymonat. A parametric study is performed to assess the influence of each parameter on the shape of the domain after the incision. As a conclusion, the total radial stored stress can be confidently estimated from the measurement of the opening after incision. We validate the approach with experimental data.


Asunto(s)
Modelos Biológicos , Neoplasias/patología , Neoplasias/fisiopatología , Fenómenos Biomecánicos , Simulación por Computador , Elasticidad , Células HCT116/patología , Células HCT116/fisiología , Humanos , Imagenología Tridimensional , Conceptos Matemáticos , Esferoides Celulares/patología , Esferoides Celulares/fisiología , Estrés Mecánico , Células Tumorales Cultivadas/patología , Células Tumorales Cultivadas/fisiología
5.
Bull Math Biol ; 79(10): 2356-2393, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28852950

RESUMEN

This paper investigates cell proliferation dynamics in small tumor cell aggregates using an individual-based model (IBM). The simulation model is designed to study the morphology of the cell population and of the cell lineages as well as the impact of the orientation of the division plane on this morphology. Our IBM model is based on the hypothesis that cells are incompressible objects that grow in size and divide once a threshold size is reached, and that newly born cell adhere to the existing cell cluster. We performed comparisons between the simulation model and experimental data by using several statistical indicators. The results suggest that the emergence of particular morphologies can be explained by simple mechanical interactions.


Asunto(s)
Linaje de la Célula , Modelos Biológicos , Neoplasias/patología , Algoritmos , Fenómenos Biomecánicos , División Celular , Línea Celular Tumoral , Linaje de la Célula/fisiología , Proliferación Celular , Tamaño de la Célula , Simulación por Computador , Células HCT116 , Humanos , Conceptos Matemáticos , Microscopía por Video , Neoplasias/fisiopatología
6.
Nat Rev Cancer ; 7(7): 495-507, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17568790

RESUMEN

Cell division cycle 25 (CDC25) phosphatases regulate key transitions between cell cycle phases during normal cell division, and in the event of DNA damage they are key targets of the checkpoint machinery that ensures genetic stability. Taking only this into consideration, it is not surprising that CDC25 overexpression has been reported in a significant number of human cancers. However, in light of the significant body of evidence detailing the stringent complexity with which CDC25 activities are regulated, the significance of CDC25 overexpression in a subset of cancers and its association with poor prognosis are proving difficult to assess. We will focus on the roles of CDC25 phosphatases in both normal and abnormal cell proliferation, provide a critical assessment of the current data on CDC25 overexpression in cancer, and discuss both current and future therapeutic strategies for targeting CDC25 activity in cancer treatment.


Asunto(s)
Ciclo Celular/fisiología , Neoplasias/enzimología , Fosfatasas cdc25/metabolismo , Animales , División Celular , Evolución Molecular , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/patología , Filogenia , Fosfatasas cdc25/clasificación , Fosfatasas cdc25/genética
7.
Biochem Biophys Res Commun ; 463(4): 1141-3, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26093294

RESUMEN

A major hurdle to the widespread application of light sheet microscopy is the lack of versatile and non-intrusive sample holders that are adaptable to a variety of biological samples for live imaging. To overcome this limitation, we present herein the application of 3D printing to the fabrication of a fully customizable casting kit. 3D printing enables facile preparation of hydrogel sample holders adaptable to any shape and number of specimen. As an example, we present the use of this device to produce a four-sample holder adapted to parallel live monitoring of multicellular tumor spheroid growth. To share our solution with the light sheet microscopy community, all files necessary to produce or customize sample holders are freely available online.


Asunto(s)
Microscopía/métodos , Impresión Tridimensional , Manejo de Especímenes/instrumentación
8.
BMC Cancer ; 13: 73, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23394599

RESUMEN

BACKGROUND: MultiCellular Tumor Spheroid (MCTS) mimics the organization of a tumor and is considered as an invaluable model to study cancer cell biology and to evaluate new antiproliferative drugs. Here we report how the characteristics of MCTS in association with new technological developments can be used to explore the regionalization and the activation of cell cycle checkpoints in 3D. METHODS: Cell cycle and proliferation parameters were investigated in Capan-2 spheroids by immunofluorescence staining, EdU incorporation and using cells engineered to express Fucci-red and -green reporters. RESULTS: We describe in details the changes in proliferation and cell cycle parameters during spheroid growth and regionalization. We report the kinetics and regionalized aspects of cell cycle arrest in response to checkpoint activation induced by EGF starvation, lovastatin treatment and etoposide-induced DNA damage. CONCLUSION: Our data present the power and the limitation of spheroids made of genetically modified cells to explore cell cycle checkpoints. This study paves the way for the investigation of molecular aspects and dynamic studies of the response to novel antiproliferative agents in 3D models.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias Pancreáticas/patología , Esferoides Celulares/patología , Antimetabolitos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Técnicas de Cultivo de Célula , Citotoxinas/farmacología , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Modelos Biológicos , Neoplasias Pancreáticas/tratamiento farmacológico , Esferoides Celulares/efectos de los fármacos , Células Tumorales Cultivadas , Gemcitabina
9.
J Microsc ; 251(2): 128-32, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23691992

RESUMEN

Single Plane Illumination Microscopy is an emerging and powerful technology for live imaging of whole living organisms. However, sample handling that relies on specimen embedding in agarose or gel is often a key limitation, especially for time-lapse monitoring. To address this issue, we developed a new concept for a holder device allowing us to prepare a sample container made of hydrogel. The production process of this holder is based on 3D printing of both a frame and casting devices. The simplicity of production and the advantages of this versatile new sample holder are shown with time-lapse recording of multicellular tumour spheroid growth. More importantly, we also show that cell division is not impaired in contrast to what is observed with gel embedding. The benefit of this new holder for other sample types, applications and experiments remains to be evaluated, but this innovative concept of fully customizable sample holder preparation potentially represents a major step forward to facilitate the large diffusion of single plane illumination microscopy technology.


Asunto(s)
Imagenología Tridimensional/instrumentación , Iluminación/instrumentación , Microscopía/instrumentación , Imagen de Lapso de Tiempo/instrumentación , Línea Celular Tumoral , Humanos , Imagenología Tridimensional/métodos , Iluminación/métodos , Microscopía/métodos , Imagen de Lapso de Tiempo/métodos
10.
Clin Epigenetics ; 14(1): 156, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443814

RESUMEN

The protocadherin proteins are cell adhesion molecules at the crossroad of signaling pathways playing a major role in neuronal development. It is now understood that their role as signaling hubs is not only important for the normal physiology of cells but also for the regulation of hallmarks of cancerogenesis. Importantly, protocadherins form a cluster of genes that are regulated by DNA methylation. We have identified for the first time that PCDHB15 gene is DNA-hypermethylated on its unique exon in the metastatic melanoma-derived cell lines and patients' metastases compared to primary tumors. This DNA hypermethylation silences the gene, and treatment with the DNA demethylating agent 5-aza-2'-deoxycytidine reinduces its expression. We explored the role of PCDHB15 in melanoma aggressiveness and showed that overexpression impairs invasiveness and aggregation of metastatic melanoma cells in vitro and formation of lung metastasis in vivo. These findings highlight important modifications of the methylation of the PCDHß genes in melanoma and support a functional role of PCDHB15 silencing in melanoma aggressiveness.


Asunto(s)
Neoplasias Pulmonares , Melanoma , Humanos , Metilación de ADN , Melanoma/genética , Transducción de Señal , Exones , Neoplasias Pulmonares/genética
11.
BMC Genomics ; 12: 548, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-22053791

RESUMEN

BACKGROUND: The genetics of transcript-level variation is an exciting field that has recently given rise to many studies. Genetical genomics studies have mainly focused on cell lines, blood cells or adipose tissues, from human clinical samples or mice inbred lines. Few eQTL studies have focused on animal tissues sampled from outbred populations to reflect natural genetic variation of gene expression levels in animals. In this work, we analyzed gene expression in a whole tissue, pig skeletal muscle sampled from individuals from a half sib F2 family shortly after slaughtering. RESULTS: QTL detection on transcriptome measurements was performed on a family structured population. The analysis identified 335 eQTLs affecting the expression of 272 transcripts. The ontologic annotation of these eQTLs revealed an over-representation of genes encoding proteins involved in processes that are expected to be induced during muscle development and metabolism, cell morphology, assembly and organization and also in stress response and apoptosis. A gene functional network approach was used to evidence existing biological relationships between all the genes whose expression levels are influenced by eQTLs. eQTLs localization revealed a significant clustered organization of about half the genes located on segments of chromosome 1, 2, 10, 13, 16, and 18. Finally, the combined expression and genetic approaches pointed to putative cis-drivers of gene expression programs in skeletal muscle as COQ4 (SSC1), LOC100513192 (SSC18) where both the gene transcription unit and the eQTL affecting its expression level were shown to be localized in the same genomic region. This suggests cis-causing genetic polymorphims affecting gene expression levels, with (e.g. COQ4) or without (e.g. LOC100513192) potential pleiotropic effects that affect the expression of other genes (cluster of trans-eQTLs). CONCLUSION: Genetic analysis of transcription levels revealed dependence among molecular phenotypes as being affected by variation at the same loci. We observed the genetic variation of molecular phenotypes in a specific situation of cellular stress thus contributing to a better description of muscle physiologic response. In turn, this suggests that large amounts of genetic variation, mediated through transcriptional networks, can drive transient cell response phenotypes and contribute to organismal adaptative potential.


Asunto(s)
Músculo Esquelético/metabolismo , Sitios de Carácter Cuantitativo , Porcinos/genética , Transcriptoma , Animales , Muerte Celular/genética , Mapeo Cromosómico , Análisis por Conglomerados , Femenino , Regulación de la Expresión Génica , Variación Genética , Masculino , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Estrés Fisiológico/genética , Porcinos/metabolismo , Transcripción Genética
12.
Biochem Biophys Res Commun ; 410(1): 87-90, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21640712

RESUMEN

CDC25 (A, B and C) phosphatases control cell cycle progression through the timely dephosphorylation and activation of cyclin-dependent kinases (CDK). At mitosis the CDC25B phosphatase activity is dependent on its phosphorylation by multiple kinases impinging on its localisation, stability and catalytic activity. Here we report that prior phosphorylation of CDC25B by CDK1 enhances its substrate properties for PLK1 in vitro, and we also show that phosphorylated S50 serves as a docking site for PLK1. Using a sophisticated strategy based on the sequential phosphorylation of CDC25B with (16)O and (18)O ATP prior to nanoLC-MS/MS analysis we identified 13 sites phosphorylated by PLK1. This study illustrates the complexity of the phosphorylation pattern and of the subsequent regulation of CDC25B activity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Serina/metabolismo , Fosfatasas cdc25/metabolismo , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Fosforilación , Serina/genética , Fosfatasas cdc25/genética , Quinasa Tipo Polo 1
13.
Cancers (Basel) ; 13(22)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34830995

RESUMEN

Characterization of the molecular mechanisms involved in tumor cell clustering could open the way to new therapeutic strategies. Towards this aim, we used an in vitro quantitative procedure to monitor the anchorage-independent cell aggregation kinetics in a panel of 25 cancer cell lines. The analysis of the relationship between selected aggregation dynamic parameters and the gene expression data for these cell lines from the CCLE database allowed identifying genes with expression significantly associated with aggregation parameter variations. Comparison of these transcripts with the perturbagen signatures from the Connectivity Map resource highlighted that they were strongly correlated with the transcriptional signature of most histone deacetylase (HDAC) inhibitors. Experimental evaluation of two HDAC inhibitors (SAHA and ISOX) showed that they inhibited the initial step of in vitro tumor cell aggregation. This validates our findings and reinforces the potential interest of HDCA inhibitors to prevent metastasis spreading.

14.
Cell Div ; 16(1): 2, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514388

RESUMEN

BACKGROUND: Cancer cell aggregation is a key process involved in the formation of tumor cell clusters. It has recently been shown that clusters of circulating tumor cells (CTCs) have an increased metastatic potential compared to isolated circulating tumor cells. Several widely used chemotherapeutic agents that target the cytoskeleton microtubules and cause cell cycle arrest at mitosis have been reported to modulate CTC number or the size of CTC clusters. RESULTS: In this study, we investigated in vitro the impact of mitotic arrest on the ability of breast tumor cells to form clusters. By using live imaging and quantitative image analysis, we found that MCF-7 cancer cell aggregation is compromised upon incubation with paclitaxel or vinorelbine, two chemotherapeutic drugs that target microtubules. In line with these results, we observed that MCF-7 breast cancer cells experimentally synchronized and blocked in metaphase aggregated poorly and formed loose clusters. To monitor clustering at the single-cell scale, we next developed and validated an in vitro assay based on live video-microscopy and custom-designed micro-devices. The study of cluster formation from MCF-7 cells that express the fluorescent marker LifeAct-mCherry using this new assay allowed showing that substrate anchorage-independent clustering of MCF-7 cells was associated with the formation of actin-dependent highly dynamic cell protrusions. Metaphase-synchronized and blocked cells did not display such protrusions, and formed very loose clusters that failed to compact. CONCLUSIONS: Altogether, our results suggest that mitotic arrest induced by microtubule-targeting anticancer drugs prevents cancer cell clustering and therefore, could reduce the metastatic potential of circulating tumor cells.

15.
Biochim Biophys Acta ; 1793(3): 462-8, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19185590

RESUMEN

Activation of cyclin-dependent kinase complexes (CDK) at key cell cycle transitions is dependent on their dephosphorylation by CDC25 dual-specificity phosphatases (CDC25A, B and C in human). The CDC25B phosphatase plays an essential role in controlling the activity of CDK1-cyclin B complexes at the entry into mitosis and together with polo-like kinase 1 (PLK1) in regulating the resumption of cell cycle progression after DNA damage-dependent checkpoint arrest in G2. In this study, we analysed the regulation of CDC25B-dependent mitosis entry by PLK1. We demonstrate that PLK1 activity is essential for the relocation of CDC25B from the cytoplasm to the nucleus. By gain and loss of function analyses, we show that PLK1 stimulates CDC25B-induced mitotic entry in both normal conditions and after DNA-damage induced G2/M arrest. Our results support a model in which the relocalisation of CDC25B to the nucleus at the G2-M transition by PLK1 regulates its mitotic inducing activity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Fosfatasas cdc25/metabolismo , División Celular , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Daño del ADN , Técnica del Anticuerpo Fluorescente , Fase G2 , Humanos , Transfección , Fosfatasas cdc25/análisis , Quinasa Tipo Polo 1
16.
Sci Rep ; 9(1): 6597, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-31036886

RESUMEN

Three-dimensional spheroids are widely used as cancer models to study tumor cell proliferation and to evaluate new anticancer drugs. Growth-induced stress (i.e., stress that persists in tumors after external loads removal) influences tumor growth and resistance to treatment. However, it is not clear whether spheroids recapitulate the tumor physical properties. Here, we demonstrated experimentally and with the support of mathematical models that, like tumors, spheroids accumulate growth-induced stress. Moreover, we found that this stress is lower in spheroids made of 5,000 cancer cells and grown for 2 days than in spheroids made of 500 cancer cells and grown for 6 days. These two culture conditions associated with different growth-induced stress levels also had different effects on the spheroid shape (using light sheet microscopy) and surface topography and stiffness (using scanning electron microscopy and atomic force microscopy). Finally, the response to irinotecan was different in the two spheroid types. Taken together, our findings bring new insights into the relationship between the spheroid physical properties and their resistance to antitumor treatment that should be taken into account by the experimenters when assessing new therapeutic agents using in vitro 3D models or when comparing studies from different laboratories.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Esferoides Celulares/efectos de los fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Técnicas de Cultivo de Célula/métodos , Humanos , Modelos Teóricos , Neoplasias/patología , Esferoides Celulares/química
17.
Cell Cycle ; 18(8): 795-808, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30870080

RESUMEN

Modeling and in silico simulations are of major conceptual and applicative interest in studying the cell cycle and proliferation in eukaryotic cells. In this paper, we present a cell cycle checkpoint-oriented simulator that uses agent-based simulation modeling to reproduce the dynamics of a cancer cell population in exponential growth. Our in silico simulations were successfully validated by experimental in vitro supporting data obtained with HCT116 colon cancer cells. We demonstrated that this model can simulate cell confluence and the associated elongation of the G1 phase. Using nocodazole to synchronize cancer cells at mitosis, we confirmed the model predictivity and provided evidence of an additional and unexpected effect of nocodazole on the overall cell cycle progression. We anticipate that this cell cycle simulator will be a potential source of new insights and research perspectives.


Asunto(s)
Neoplasias del Colon/metabolismo , Simulación por Computador , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Nocodazol/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/patología , Células Eucariotas/metabolismo , Células HCT116 , Humanos , Cinética , Mitosis/efectos de los fármacos , Microambiente Tumoral
18.
PLoS One ; 14(5): e0217227, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31120960

RESUMEN

Growing multicellular spheroids recapitulate many features of expanding microtumours, and therefore they are an attractive system for biomechanical studies. Here, we report an original approach to measure and characterize the forces exerted by proliferating multicellular spheroids. As force sensors, we used high aspect ratio PDMS pillars arranged as a ring that supports a growing breast tumour cell spheroid. After optical imaging and determination of the force application zones, we combined 3D reconstruction of the shape of each deformed PDMS pillar with the finite element method to extract the forces responsible for the experimental observation. We found that the force exerted by growing spheroids ranges between 100nN and 300nN. Moreover, the exerted force was dependent on the pillar stiffness and increased over time with spheroid growth.


Asunto(s)
Neoplasias de la Mama/patología , Técnicas de Cultivo de Célula/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Esferoides Celulares/patología , Femenino , Humanos , Estrés Mecánico , Análisis de Matrices Tisulares
19.
Anim Biotechnol ; 19(3): 138-43, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18607786

RESUMEN

A member of the porcine Ankyrin repeat and suppressor of cytokine signaling (SOCS) Box protein family (ASB), designed as ASB6, was sequenced and the genomic organization of the six exons was determined. We present here a detailed analysis of ASB6 transcripts in pigs. We demonstrate the existence of an alternative transcript resulting from intron retention. This secondary transcript, if functional, encodes a protein without SOCS box. A comparison of mammalian ASB6 transcripts is performed to demonstrate the importance of transcripts encoding for a truncated ASB6 protein.


Asunto(s)
Empalme Alternativo , Repetición de Anquirina , Proteínas Supresoras de la Señalización de Citocinas/genética , Sus scrofa/genética , Transcripción Genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , ADN Complementario/aislamiento & purificación , Etiquetas de Secuencia Expresada , Humanos , Intrones , Ratones , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Reacción en Cadena de la Polimerasa , Ratas , Alineación de Secuencia , Análisis de Secuencia de ADN
20.
Oncol Lett ; 15(2): 2006-2009, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29434901

RESUMEN

Multicellular tumor spheroids models are of increasing interest in preclinical studies and pharmacological evaluation. However, their storage and transport is often a limitation because it requires adapted and expensive procedures. Here, we propose a very simple method to store 3D spheroids, using a procedure based on oxygen absorber-induced anoxia. We report that oxygen absorbers allow generating an anoxic environment for spheroid storage in culture plates. Oxygen absorber-induced anoxia fully and reversibly arrests spheroid growth for 4 days at 37°C and up to 18 days at 4°C. We then show that the response to etoposide is comparable in spheroids preserved in conditions of absorber-induced anoxia at 4°C and spheroids kept in normoxia at 37°C. These results represent a major improvement that should simplify the storage, transport and use of 3D spheroids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA