Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 137(3): 560-70, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19410549

RESUMEN

Sirtuins are NAD-dependent protein deacetylases that connect metabolism and aging. In mammals, there are seven sirtuins (SIRT1-7), three of which are associated with mitochondria. Here, we show that SIRT5 localizes in the mitochondrial matrix and interacts with carbamoyl phosphate synthetase 1 (CPS1), an enzyme, catalyzing the initial step of the urea cycle for ammonia detoxification and disposal. SIRT5 deacetylates CPS1 and upregulates its activity. During fasting, NAD in liver mitochondria increases, thereby triggering SIRT5 deacetylation of CPS1 and adaptation to the increase in amino acid catabolism. Indeed, SIRT5 KO mice fail to upregulate CPS1 activity and show elevated blood ammonia during fasting. Similar effects occur during long-term calorie restriction or a high protein diet. These findings demonstrate SIRT5 plays a pivotal role in ammonia detoxification and disposal by activating CPS1.


Asunto(s)
Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , Mitocondrias Hepáticas/metabolismo , Proteínas Mitocondriales/metabolismo , Sirtuinas/metabolismo , Amoníaco/metabolismo , Animales , Células Cultivadas , Activación Enzimática , Humanos , Ratones , Especificidad por Sustrato
2.
Biochim Biophys Acta ; 1804(8): 1652-7, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19962456

RESUMEN

Members of the sirtuin family of NAD(+)-dependent protein deacetylases are important regulators of longevity in yeast, worms, and flies. Mammals have seven sirtuins (SIRT1-7), each characterized by differences in subcellular localization, substrate preference, and biological function. While it is unclear whether sirtuins regulate aging in mammals, it is clear that sirtuins influence diverse aspects of their metabolism. Indeed, SIRT1 promotes oxidation of fatty acids in liver and skeletal muscle, cholesterol metabolism in liver, and lipid mobilization in white adipose tissue. Moreover, small-molecule activators of SIRT1 have recently been shown to protect mice from the negative effects of a high-fat diet. These findings suggest that sirtuins might provide important new targets for the treatment of obesity and related diseases. In this review, we discuss the major findings linking sirtuins with the regulation of lipid metabolism.


Asunto(s)
Metabolismo de los Lípidos , Sirtuinas/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Restricción Calórica , Grasas de la Dieta/administración & dosificación , Activación Enzimática/efectos de los fármacos , Humanos , Insulina/metabolismo , Secreción de Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Ratones , Modelos Biológicos , Músculo Esquelético/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Resveratrol , Estilbenos/farmacología
3.
Mol Pharmacol ; 75(5): 1198-209, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19204094

RESUMEN

Neurotrophins are critical for the survival of neurons during development and insufficient access to neurotrophins later in life may contribute to the loss of neurons in neurodegenerative disease, spinal cord injury, and stroke. The prolyl hydroxylase inhibitors ethyl 3,4-dihydroxybenzoic acid (DHB) and dimethyloxalylglycine (DMOG) were shown to inhibit cell death in a model of neurotrophin deprivation that involves depriving sympathetic neurons of nerve growth factor (NGF). Here we show that treatment with DMOG or DHB reverses the decline in 2-deoxyglucose uptake caused by NGF withdrawal and suppresses the NGF deprivation-induced accumulation of reactive oxygen species. Neither DMOG nor DHB prevented death when NGF deprivation was carried out under conditions of glucose starvation, and both compounds proved toxic to NGF-maintained neurons deprived of glucose, suggesting that their survival-promoting effects are mediated through the preservation of glucose metabolism. DHB and DMOG are well known activators of hypoxia-inducible factor (HIF), but whether activation of HIF underlies their survival-promoting effects is not known. Using gene disruption and RNA interference, we provide evidence that DMOG and, to a lesser extent, DHB require HIF-2alpha expression to inhibit NGF deprivation-induced death. Furthermore, suppressing basal HIF-2alpha expression, but not HIF-1alpha, in NGF-maintained neurons is sufficient to promote cell death. These results implicate HIF-2alpha in the neuroprotective mechanisms of prolyl hydroxylase inhibitors and in an endogenous cell survival pathway activated by NGF in developing neurons.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Inhibidores Enzimáticos/farmacología , Glucosa/metabolismo , Factor de Crecimiento Nervioso/farmacología , Fármacos Neuroprotectores/farmacología , Ganglio Cervical Superior/efectos de los fármacos , Aminoácidos Dicarboxílicos/farmacología , Animales , Células COS , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Hidroxibenzoatos/farmacología , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Ganglio Cervical Superior/citología
4.
J Neurochem ; 103(5): 1897-906, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17760870

RESUMEN

Nerve growth factor (NGF) serves a critical survival-promoting function for developing sympathetic neurons. Following removal of NGF, sympathetic neurons undergo apoptosis characterized by the activation of c-Jun N-terminal kinases (JNKs), up-regulation of BH3-only proteins including BcL-2-interacting mediator of cell death (BIM)(EL), release of cytochrome c from mitochondria, and activation of caspases. Here we show that two small-molecule prolyl hydroxylase inhibitors frequently used to activate hypoxia-inducible factor (HIF) - ethyl 3,4-dihydroxybenzoic acid (DHB) and dimethyloxalylglycine (DMOG) - can inhibit apoptosis caused by trophic factor deprivation. Both DHB and DMOG blocked the release of cytochrome c from mitochondria after NGF withdrawal, whereas only DHB blocked c-Jun up-regulation and phosphorylation. DHB, but not DMOG, also attenuated the induction of BIM(EL) in NGF-deprived neurons, suggesting a possible mechanism whereby DHB could inhibit cytochrome c release. DMOG, on the other hand, was substantially more effective at stabilizing HIF-2alpha and inducing expression of the HIF target gene hexokinase 2 than was DHB. Thus, while HIF prolyl hydroxylase inhibitors can delay cell death in NGF-deprived neurons, they do so through distinct mechanisms that, at least in the case of DHB, are partly independent of HIF stabilization.


Asunto(s)
Aminoácidos Dicarboxílicos/farmacología , Inhibidores Enzimáticos/farmacología , Hidroxibenzoatos/farmacología , Factor de Crecimiento Nervioso/deficiencia , Neuronas/efectos de los fármacos , Animales , Animales Recién Nacidos , Muerte Celular/efectos de los fármacos , Células Cultivadas , Citocromos c/metabolismo , Embrión de Mamíferos , Regulación de la Expresión Génica/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas , Ganglio Cervical Superior/citología
5.
Prog Brain Res ; 146: 111-26, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14699960

RESUMEN

Nerve growth factor (NGF) is required for the survival of developing sympathetic and sensory neurons. In the absence of NGF, these neurons undergo protein synthesis-dependent apoptosis. Ten years have gone by since the first reports of specific genes being upregulated during NGF deprivation-induced cell death. Over the last decade, a few additional genes (DP5, Bim, SM-20) have been added to a list that began with cyclin D1 and c-jun. In this chapter, we discuss the evidence that these genes act as regulators of neuronal cell death. We also suggest a hypothesis for how one gene, SM-20, may function to suppress a self-protection mechanism in NGF-deprived neurons.


Asunto(s)
Muerte Celular/fisiología , Proteínas de Unión al ADN , Expresión Génica/fisiología , Factores de Crecimiento Nervioso/deficiencia , Neuronas/citología , Animales , Proteínas Reguladoras de la Apoptosis , División Celular , Supervivencia Celular/fisiología , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Dioxigenasas , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Hidroxilación , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Inmunohistoquímica , Factores de Crecimiento Nervioso/historia , Factores de Crecimiento Nervioso/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/metabolismo , Procolágeno-Prolina Dioxigenasa/química , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA