Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Small ; 20(5): e2304424, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37726235

RESUMEN

Peptide assemblies are promising nanomaterials, with their properties and technological applications being highly hinged on their supramolecular architectures. Here, how changing the chirality of the terminal charged residues of an amphiphilic hexapeptide sequence Ac-I4 K2 -NH2 gives rise to distinct nanostructures and supramolecular handedness is reported. Microscopic imaging and neutron scattering measurements show thin nanofibrils, thick nanofibrils, and wide nanotubes self-assembled from four stereoisomers. Spectroscopic and solid-state nuclear magnetic resonance (NMR) analyses reveal that these isomeric peptides adopt similar anti-parallel ß-sheet secondary structures. Further theoretical calculations demonstrate that the chiral alterations of the two C-terminal lysine residues cause the formation of diverse single ß-strand conformations, and the final self-assembled nanostructures and handedness are determined by the twisting direction and degree of single ß-strands. This work not only lays a useful foundation for the fabrication of diverse peptide nanostructures by manipulating the chirality of specific residues but also provides a framework for predicting the supramolecular structures and handedness of peptide assemblies from single molecule conformations.


Asunto(s)
Lateralidad Funcional , Nanoestructuras , Péptidos/química , Nanoestructuras/química , Isomerismo , Estructura Secundaria de Proteína
2.
Biomacromolecules ; 25(3): 1602-1611, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38323536

RESUMEN

Helicobacter pylori can cause various gastric conditions including stomach cancer in an acidic environment. Although early H. pylori infections can be treated by antibiotics, prolonged antibiotic administrations may lead to the development of antimicrobial resistance, compromising the effectiveness of the treatments. Antimicrobial peptides (AMPs) have been reported to possess unique advantages against antimicrobial-resistant bacteria due to their rapid physical membrane disruptions and anti-inflammation/immunoregulation properties. Herein, we have developed an AMP hydrogel, which can be orally administered for the treatment of H. pylori infection. The hydrogel has potent antimicrobial activity against H. pylori, achieving bacterial eradication within minutes of action. Compared with the AMP solution, the hydrogel formulation significantly reduced the cytotoxicity and enhanced proteolytic stability. In vivo experiments suggested that the hydrogel formed at pH 4 had superior therapeutic effects to those at pH 7 and 10 hydrogels, attributed to its rapid release and bactericidal action within the acidic stomach environment. Compared to conventional antibiotic treatments, the AMP hydrogel had the advantages of fast bacterial killing in the gastric juice and obviated proton pump inhibitors during the treatment. Although both the AMP hydrogel and antibiotics suppressed the expression of pro-inflammatory cytokines, the former uniquely promoted inflammation resolution. These results indicate that the AMP hydrogels with effectiveness and biosafety may be potential candidates for the clinical treatment of H. pylori infections.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Péptidos Antimicrobianos , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Antibacterianos
3.
Small ; 19(3): e2204428, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36417574

RESUMEN

Recent developments in antimicrobial peptides (AMPs) have focused on the rational design of short sequences with less than 20 amino acids due to their relatively low synthesis costs and ease of correlation of the structure-function relationship. However, gaps remain in the understanding of how short cationic AMPs interact with the bacterial outer and inner membranes to affect their antimicrobial efficacy and dynamic killing. The membrane-lytic actions of two designed AMPs, G(IIKK)3 I-NH2 (G3 ) and G(IIKK)4 I-NH2 (G4 ), and previously-studied controls GLLDLLKLLLKAAG-NH2 (LDKA, biomimetic) and GIGAVLKVLTTGLPALISWIKRKR-NH2 (Melittin, natural) are examined. The mechanistic processes of membrane damage and the disruption strength of the four AMPs are characterized by molecular dynamics simulations and experimental measurements including neutron reflection and scattering. The results from the combined studies are characterized with distinctly different intramembrane nanoaggregates formed upon AMP-specific binding, reflecting clear influences of AMP sequence, charge and the chemistry of the inner and outer membranes. G3 and G4 display different nanoaggregation with the outer and inner membranes, and the smaller sizes and further extent of insertion of the intramembrane nanoaggregates into bacterial membranes correlate well with their greater antimicrobial efficacy and faster dynamic killing. This work demonstrates the crucial roles of intramembrane nanoaggregates in optimizing antimicrobial efficacy and dynamic killing.


Asunto(s)
Antiinfecciosos , Péptidos Antimicrobianos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Antiinfecciosos/farmacología , Bacterias , Simulación de Dinámica Molecular
4.
Mol Pharm ; 20(5): 2502-2512, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37012645

RESUMEN

Interfacial adsorption of monoclonal antibodies (mAbs) can cause structural deformation and induce undesired aggregation and precipitation. Nonionic surfactants are often added to reduce interfacial adsorption of mAbs which may occur during manufacturing, storage, and/or administration. As mAbs are commonly manufactured into ready-to-use syringes coated with silicone oil to improve lubrication, it is important to understand how an mAb, nonionic surfactant, and silicone oil interact at the oil/water interface. In this work, we have coated a polydimethylsiloxane (PDMS) nanofilm onto an optically flat silicon substrate to facilitate the measurements of adsorption of a model mAb, COE-3, and a commercial nonionic surfactant, polysorbate 80 (PS-80), at the siliconized PDMS/water interface using spectroscopic ellipsometry and neutron reflection. Compared to the uncoated SiO2 surface (mimicking glass), COE-3 adsorption to the PDMS surface was substantially reduced, and the adsorbed layer was characterized by the dense but thin inner layer of 16 Å and an outer diffuse layer of 20 Å, indicating structural deformation. When PS-80 was exposed to the pre-adsorbed COE-3 surface, it removed 60 wt % of COE-3 and formed a co-adsorbed layer with a similar total thickness of 36 Å. When PS-80 was injected first or as a mixture with COE-3, it completely prevented COE-3 adsorption. These findings reveal the hydrophobic nature of the PDMS surface and confirm the inhibitory role of the nonionic surfactant in preventing COE-3 adsorption at the PDMS/water interface.


Asunto(s)
Anticuerpos Monoclonales , Tensoactivos , Tensoactivos/química , Adsorción , Anticuerpos Monoclonales/química , Dióxido de Silicio , Aceites de Silicona/química , Polisorbatos/química , Dimetilpolisiloxanos
5.
J Am Chem Soc ; 144(47): 21544-21554, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36345816

RESUMEN

Peptide self-assembly is a hierarchical process during which secondary structures formed in the initial stages play a critical role in determining the subsequent assembling processes and final structural ordering. Unusual secondary structures hold promise as a source to develop novel supramolecular architectures with unique properties. In this work, we report the design of a new peptide self-assembly strategy based on unusual α-sheet secondary structures. In light of the strong propensity of leucine toward forming helical conformations and its high hydrophobicity, we design two short amphiphilic peptides Ac-LDLLDLK-NH2 and Ac-DLLDLLDK-NH2 with alternating l- and d-form amino acids. Microscopic imaging, neutron scattering, and spectroscopic measurements indicate that the two heterochiral peptides form highly ordered wide nanotubes and helical ribbons with monolayer thickness, in sharp contrast to twisted nanofibrils formed by the homochiral peptide Ac-LLLLK-NH2. Molecular dynamics simulations from monomers to trimers reveal that the two heteropeptides fold into α-sheets instead of ß-sheets, which readily pack into tubular architectures in oligomer simulations. Simulated circular dichroism spectra based on α-sheet oligomers validate the proposed α-sheet secondary structures. These results form an important basis for the rational design of higher-order peptide assemblies with novel properties based on unusual α-sheet secondary structures.


Asunto(s)
Aminoácidos , Péptidos , Péptidos/química , Estructura Secundaria de Proteína , Dicroismo Circular , Conformación Proteica en Lámina beta
6.
Langmuir ; 38(21): 6623-6637, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35587380

RESUMEN

Cationic biocides have been widely used as active ingredients in personal care and healthcare products for infection control and wound treatment for a long time, but there are concerns over their cytotoxicity and antimicrobial resistance. Designed lipopeptides are potential candidates for alleviating these issues because of their mildness to mammalian host cells and their high efficacy against pathogenic microbial membranes. In this study, antimicrobial and cytotoxic properties of a de novo designed lipopeptide, CH3(CH2)12CO-Lys-Lys-Gly-Gly-Ile-Ile-NH2 (C14KKGGII), were assessed against that of two traditional cationic biocides CnTAB (n = 12 and 14), with different critical aggregation concentrations (CACs). C14KKGGII was shown to be more potent against both bacteria and fungi but milder to fibroblast host cells than the two biocides. Biophysical measurements mimicking the main features of microbial and host cell membranes were obtained for both lipid monolayer models using neutron reflection and small unilamellar vesicles (SUVs) using fluorescein leakage and zeta potential changes. The results revealed selective binding to anionic lipid membranes from the lipopeptide and in-membrane nanostructuring that is distinctly different from the co-assembly of the conventional CnTAB. Furthermore, CnTAB binding to the model membranes showed low selectivity, and its high cytotoxicity could be attributed to both membrane lysis and chemical toxicity. This work demonstrates the advantages of the lipopeptides and their potential for further development toward clinical application.


Asunto(s)
Antiinfecciosos , Desinfectantes , Animales , Antibacterianos/química , Antiinfecciosos/toxicidad , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/toxicidad , Desinfectantes/farmacología , Lipopéptidos/farmacología , Mamíferos , Pruebas de Sensibilidad Microbiana
7.
Curr Opin Colloid Interface Sci ; 52: 101417, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33642918

RESUMEN

Since the outbreak of the COVID-19 pandemic, most countries have recommended their citizens to adopt social distance, hand hygiene, and face mask wearing. However, wearing face masks has not been well adopted by many citizens. While the reasons are complex, there is a general perception that the evidence to support face mask wearing is lacking, especially for the general public in a community setting. Face mask wearing can block or filter airborne virus-carrying particles through the working of colloid and interface science. This paper assesses current knowledge behind the design and functioning of face masks by reviewing the selection of materials, mask specifications, relevant laboratory tests, and respiratory virus transmission trials, with an overview of future development of reusable masks for the general public. This review highlights the effectiveness of face mask wearing in the prevention of COVID-19 infection.

8.
Langmuir ; 36(13): 3531-3539, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32183512

RESUMEN

In this article, the interaction between a designed antimicrobial peptide (AMP) G(IIKK)3I-NH2 (G3) and four typical conventional surfactants (sodium dodecyl sulfonate (SDS), hexadecyl trimethyl ammonium bromide (C16TAB), polyoxyethylene (23) lauryl ether (C12EO23), and tetradecyldimethylamine oxide (C14DMAO)) has been studied through surface tension measurement and circular dichroism (CD) spectroscopy. The antimicrobial activities of AMP/surfactant mixtures have also been studied with Gram-negative Escherichia coli, Gram-positive Staphylococcus aureus, and the fungus Candida albicans. The cytotoxicity of the AMP/surfactant mixtures has also been assessed with NIH 3T3 and human skin fibroblast (HSF) cells. The surface tension data showed that the AMP/SDS mixture was much more surface-active than SDS alone. CD results showed that G3 conformation changed from random coil, to ß-sheet, and then to α-helix with increasing SDS concentration, showing a range of structural transformation driven by the different interactions with SDS. The antimicrobial activity of G3 to Gram-negative and Gram-positive bacteria decreased in the presence of SDS due to the strong interaction of electrostatic attraction between the peptide and the surfactant. The interactions between G3 and C16TAB, C12EO23, and C14DMAO were much weaker than SDS. As a result, the surface tension of surfactants with G3 did not change much, neither did the secondary structures of G3. The antimicrobial activities of G3 were little affected in the presence of C12EO23, slightly improved by C14DMAO, and clearly enhanced by cationic surfactant C16TAB due to its strong cationic and antimicrobial nature, consistent with their surface physical activities as binary mixtures. Although AMP G3 did not show activity to fungus, the mixtures of AMP/C16TAB and AMP/C14DMAO could kill C. albicans at high surfactant concentrations. The mixtures had rather high cytotoxicity to NIH 3T3 and HSF cells although G3 is nontoxic to cells. Cationic AMPs can be formulated with nonionic, cationic, and zwitterionic surfactants during product development, but care must be taken when AMPs are formulated with anionic surfactants, as the strong electrostatic interaction may undermine their antimicrobial activity.


Asunto(s)
Antibacterianos , Péptidos , Polietilenglicoles , Tensoactivos , Cetrimonio , Humanos , Proteínas Citotóxicas Formadoras de Poros , Tensión Superficial , Tensoactivos/toxicidad
9.
Langmuir ; 36(7): 1737-1744, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32009405

RESUMEN

The function and properties of peptide-based materials depend not only on the amino acid sequence but also on the molecular conformations. In this paper, we chose a series of peptides Gm(XXKK)nX-NH2 (m = 0, 3; n = 2, 3; X = I, L, and V) as the model molecules and studied the conformation regulation through N-terminus lipidation and their formulation with surfactants. The structural and morphological transition of peptide self-assemblies have also been investigated via transmission electron microscopy, atomic force microscopy, circular dichroism spectroscopy, and small-angle neutron scattering. With the terminal alkylation, the molecular conformation changed from random coil to ß-sheet or α-helix. The antimicrobial activities of alkylated peptide were different. C16-G3(IIKK)3I-NH2 showed antimicrobial activity against Streptococcus mutans, while C16-(IIKK)2I-NH2 and C16-G3(IIKK)2I-NH2 did not kill the bacteria. The surfactant sodium dodecyl sulfonate could rapidly induce the self-assemblies of alkylated peptides (C16-(IIKK)2I-NH2, C16-G3(IIKK)2I-NH2, C16-G3(VVKK)2V-NH2) from nanofibers to micelles, along with the conformation changing from ß-sheet to α-helix. The cationic surfactant hexadecyl trimethyl ammonium bromide made the lipopeptide nanofibers thinner, and nonionic surfactant polyoxyethylene (23) lauryl ether (C12EO23) induced the nanofibers much more intensively. Both the activity and the conformation of the α-helical peptide could be modulated by lipidation. Then, the self-assembled morphologies of alkylated peptides could also be further regulated with surfactants through hydrophobic, electrostatic, and hydrogen-bonding interactions. These results provided useful strategies to regulate the molecular conformations in peptide-based material functionalization.


Asunto(s)
Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Tensoactivos/química , Acilación , Animales , Antibacterianos/farmacología , Antibacterianos/toxicidad , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/toxicidad , Bacillus subtilis/efectos de los fármacos , Cetrimonio/química , Escherichia coli/efectos de los fármacos , Ratones , Células 3T3 NIH , Nanofibras/química , Polietilenglicoles/química , Conformación Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Streptococcus mutans/química
10.
Langmuir ; 35(2): 561-569, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30540480

RESUMEN

A Markov chain (MC) model has been used to model the following binary surfactant mixtures: linear alkylbenzenesulfonate (LAS4)/octaethylene glycol monododecyl ether (C12E8) at 10 and 25 °C, LAS6/acidic sophorolipid (AS), C12Betaine/C12Maltoside, sodium lauryl ether sulfate (SLES2)/C12E8, and rhamnolipid (R1)/LAS6. The critical micellar concentration and the composition of the adsorbed layer, for each system, can be modeled using the same monomer reactivity ratio values, g1 and g2. This implies that the interactions between the surfactants in the bulk solution and at the interface are the same, within error. For the LAS4/C12E8 system at 25 °C, the ranges of g1 and g2 values which can model both sets of data are within 0.03-0.05 and 1.55-2.10, respectively; g1 ≪ g2 implies that C12E8 is significantly more surface active than LAS4. The MC model indicates a negative change in the free energy upon mixing for all of the surfactant systems, consistent with the literature. The interfacial mixing behavior of LAS4/SLES2 is inferred from the results of the MC analysis of the LAS4/C12E8 and SLES2/C12E8 systems, which share a common surfactant partner in C12E8, and the prediction is in line with the published data.

11.
Biomacromolecules ; 20(9): 3601-3610, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31365246

RESUMEN

Mixed thermoreversible gels were successfully fabricated by the addition of a thermosensitive polymer, poly(N-isopropylacrylamide) (PNIPAM), to fibrillar nanostructures self-assembled from a short peptide I3K. When the temperature was increased above the lower critical solution temperature of the PNIPAM, the molecules collapsed to form condensed globular particles, which acted as cross-links to connect different peptide nanofibrils and freeze their movements, resulting in the formation of a hydrogel. Since these processes were physically driven, such hydrogels could be reversibly switched between the sol and gel states as a function of temperature. As a model peptide, I3K was formulated with PNIPAM to produce a thermoreversible sol-gel system with a transition temperature of ∼33 °C, which is just below the body temperature. The antibacterial peptide of G(IIKK)3I-NH2 could be conveniently encapsulated in the hydrogel by the addition of the solution at lower temperatures in the sol phase and then increasing the temperature to be above 33 °C for gelation. The hydrogel gave a sustained and controlled linear release of G(IIKK)3I-NH2 over time. Using the peptide nanofibrils as three-dimensional scaffolds, such thermoresponsive hydrogels mimic the extracellular matrix and could potentially be used as injectable hydrogels for minimally invasive drug delivery or tissue engineering.


Asunto(s)
Resinas Acrílicas/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Sistemas de Liberación de Medicamentos , Hidrogeles/farmacología , Resinas Acrílicas/química , Péptidos Catiónicos Antimicrobianos/química , Humanos , Hidrogeles/química , Temperatura , Sensación Térmica , Ingeniería de Tejidos
12.
Biomacromolecules ; 17(2): 572-9, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26741638

RESUMEN

The aim of this work is to examine how adhered individual cells could detach from the patterned, discontinuous thermoresponsive coating substrate and how different patterns in the form of thermoresponsive squares and gaps would affect cell detachment. Microgels prepared from copolymerization of N-isopropylacrylamide and styrene (pNIPAAmSt) were spin-coated on polyethylenimine (PEI) precoated glass coverslips to form a uniform microgel monolayer; then a surface-moisturized PMDS stamp was used to contact the microgel monolayer at room temperature. The thin layer of water on the PDMS stamp surface worked as an ink to penetrate the microgels so that any microgels in direct contact with the wet stamp surface became swollen and could be peeled away, while uncontacted microgels formed patterns. Using this method, various patterns with different thermo-island diameters and gaps could be fabricated. NIH3T3 fibroblast cells were then cultured on these patterns to study their detachment behavior. It was found that cells could detach not only from these discontinuous thermoresponsive coatings, but also from the patterned surfaces with the thermoresponsive area being as low as 20% of the cell spread area.


Asunto(s)
Fibroblastos/fisiología , Poliestirenos/química , Acrilamidas/química , Animales , Adhesión Celular , Geles , Ratones , Células 3T3 NIH , Tamaño de la Partícula , Polietileneimina/química , Propiedades de Superficie , Temperatura
13.
Biomacromolecules ; 15(11): 4021-31, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25312914

RESUMEN

Monodisperse poly(N-isopropylacrylamide-styrene) (PNIPAAmSt) microgels with different St/NIPAAm ratios have been synthesized via a one-step surfactant-free emulsion polymerization process. The resulting microgel dispersions were used to fabricate 2D arrays on the surface of silicon wafers/glass coverslips through dip coating. The thermal responsiveness of the PNIPAAmSt microgel arrays was examined by spectroscopic ellipsometry and the results unraveled that the thermoresponsive behavior of the arrays was highly consistent with the microgels dispersed in the bulk, showing high dependence on the content of styrene. The structure of the films varied from nonclose-packed 2D arrays to close-packed 2D arrays, depending on both properties of the microgels and array fabrication conditions. When the weight ratio of styrene was below 40%, the microgel arrays demonstrated effective control for cell growth and detachment across their volume phase transition temperatures (around 28 °C). The extent of swelling of the microgels was the key factor to determine whether the cells could detach from the film easily. For the rather close-packed 2D arrays prepared by the same kind of PNIPAAmSt microgels, the gaps between microgel particles showed no obvious effect on the rate of cell detachment.


Asunto(s)
Acrilamidas/química , Acrilamidas/farmacología , Proliferación Celular/efectos de los fármacos , Geles/química , Geles/farmacología , Animales , Ratones , Células 3T3 NIH
14.
J Colloid Interface Sci ; 663: 287-294, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38402823

RESUMEN

The co-assembly of different peptide chains usually leads to the formation of intricate architectures and sophisticated functions in biological systems. Although the co-assembly of stereoisomeric peptides represents a facile and flexible strategy for the synthesis of peptide-based nanomaterials with novel structures and potentially interesting properties, there is a lack of a general knowledge on how different isomers pack during assembly. Through the combined use of simulations and experimental observations, we report that heterochiral pairing is preferred to homochiral pairing at the molecular scale but self-sorting dictates beyond the molecular level for the mixtures of the short stereoisomeric ß-sheet peptides I3K (Ile-Ile-Ile-Lys). Furthermore, we demonstrate that flat ß-sheets and fibril morphology are always preferred to twisted ones during heterochiral pairing and subsequent assembly. However, the heterochiral pairing into flat morphology is not always at an equimolar ratio. Instead, a non-equimolar ratio (1:2) is observed for the mixing of homochiral LI3LK and heterochiral LI3DK, whose strand twisting degrees differ greatly. Such a study provides a paradigm for understanding the co-assembly of stereoisomeric peptides at the molecular scale and harnessing their blending for targeted nanostructures.


Asunto(s)
Nanoestructuras , Péptidos , Estereoisomerismo , Péptidos/química , Nanoestructuras/química , Conformación Proteica en Lámina beta
15.
Langmuir ; 29(30): 9335-51, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23819862

RESUMEN

This is a second paper responding to recent papers by Menger et al. and the ensuing discussion about the application of the Gibbs equation to surface tension (ST) data. Using new neutron reflection (NR) measurements on sodium dodecylsulfate (SDS) and sodium dodecylmonooxyethylene sulfate (SLES) above and below their CMCs and with and without added NaCl, in conjunction with the previous ST measurements on SDS by Elworthy and Mysels (EM), we conclude that (i) ST measurements are often seriously compromised by traces of divalent ions, (ii) adsorption does not generally reach saturation at the CMC, making it difficult to obtain the limiting Gibbs slope, and (iii) the significant width of micellization may make it impossible to apply the Gibbs equation in a significant range of concentration below the CMC. Menger et al. proposed ii as a reason for the difficulty of applying the Gibbs equation to ST data. Conclusions i and iii now further emphasize the failings of the ST-Gibbs analysis for determining the limiting coverage at the CMC, especially for SDS. For SDS, adsorption increases above the CMC to a value of 10 × CMC, which is about 25% greater than at the CMC and about the same as at the CMC in the presence of 0.1 M NaCl. In contrast, the adsorption of SLES reaches a limit at the CMC with no further increase up to 10 × CMC, but the addition of 0.1 M NaCl increases the surface excess by 20-25%. The results for SDS are combined with earlier NR results to generate an adsorption isotherm from 2 to 100 mM. The NR results for SDS are compared to the definitive surface tension (ST) measurements of EM, and the surface excesses agree over the range where they can safely be compared, from 2 to 6 mM. This confirms that the anomalous decrease in the slope of EM's σ - ln c curve between 6 mM and the CMC at 8.2 mM results from changes in activity associated with a significant width of micellization. This anomaly shows that it is impossible to apply the Gibbs equation usefully from 6 to 8.2 mM (i.e., the lack of knowledge of the activity in this range is the same as above the CMC (8.2 mM)). It was found that a mislabeling of the original data in EM may have prevented the use of this excellent ST data as a standard by other authors. Although NR and ST results for SDS in the absence of added electrolyte show that the discrepancies can be rationalized, ST is generally shown to be less accurate and more vulnerable to impurities, especially divalent ions, than NR. The radiotracer technique is shown to be less accurate than ST-Gibbs in that the four radiotracer measurements of the surface excess are consistent neither with each other nor with ST and NR. It is also shown that radiotracer results on aerosol-OT are likely to be incorrect. Application of the mass action (MA) model of micellization to the ST curves of SDS and SLES through and above the CMC shows that they can be explained by this model and that they depend on the degree of dissociation of the micelle, which leads to a larger change in the mean activity, and hence the adsorption, for the more highly dissociated SDS micelles than for SLES. Previous measurements of the activity of SDS above the CMC were found to be semiquantitatively consistent with the change in mean activity predicted by the MA model but inconsistent with the combined ST, NR, and Gibbs equation results.

16.
Langmuir ; 29(30): 9324-34, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23758191

RESUMEN

Four recent papers by Menger et al. have questioned methods of analysis of surface tension (ST) data that use the Gibbs equation to obtain the surface excess (Γ) of a surfactant at the air-water interface. There have been two responses which challenge the assertions of Menger et al. and a response from Menger et al. We use directly determined values of Γ from a range of neutron reflectometry (NR) data to examine some of the issues that are relevant to these seven papers. We show that there is excellent agreement between NR measurements and careful ST analyses for a wide range of nonionic adsorbents, including surfactants and polymers. The reason it is possible to obtain good agreement near the critical micelle concentration (CMC) is that nonionic surfactants generally seem to saturate the surface before the CMC is reached and this makes it relatively easy to determine the limiting slope (and hence Γ) of the ST-log(concentration) plot at the CMC. Furthermore, there is also generally good agreement between ST and NR over the whole range of concentrations below the CMC until depletion effects become important. Depletion effects are shown to become important at higher concentrations than expected, which brings them into the range of many experiments, including techniques other than ST and NR. This is illustrated with new measurements on the biosurfactant surfactin. The agreement between ST and NR outside the depletion range can be regarded as a mutual validation of the two methods, especially as it is demonstrated independently of any model adsorption isotherms. In the normal experimental situation NR is less vulnerable to depletion than ST and we show how NR and a single ST measurement can be used to determine the hitherto undetermined CMC of the nonionic surfactant C18E12, which is found to be 1.3 × 10(-6) M.

17.
Biomacromolecules ; 14(10): 3615-25, 2013 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-23972078

RESUMEN

This work reports the formation of thermoresponsive poly(N-isopropylacrylamide-co-styrene) (PNIPAAmSt) microgel films and their use for cell growth and detachment via temperature stimuli. Thermoresponsive surface films can be conveniently produced by spin-coating or drop-coating of PNIPAAmSt microgel dispersions onto substrates such as glass coverslips, cell culture plates, and flasks, making this technique widely accessible. The thickness, stability, and reversibility of the PNIPAAmSt films coated on silicon wafers with respect to temperature switching were examined by spectroscopic ellipsometry (SE) and atomic force microscopy (AFM). The results unraveled the direct link between thermoreversibility and changes in film thickness and surface morphology, showing reversible hydration and dehydration. Under different coating conditions, well-packed microgel monolayers could be utilized for effective cell recovery and harvesting. Furthermore, cell adhesion and detachment processes were reversible and there was no sign of loss of cell viability during repeated surface attachment, growth, and detachment, showing a mild interaction between cells and thermoresponsive surface. More importantly, there was little deterioration of the packing of the thermoresponsive films or any major loss of microgel particles during reuse, indicating their robustness. These PNIPAAmSt microgel films thus open up a convenient interfacial platform for cell and cell sheet harvesting while avoiding the damage of enzymatic cleavage.


Asunto(s)
Resinas Acrílicas/química , Separación Celular/métodos , Geles/química , Poliestirenos/química , Temperatura , Animales , Adhesión Celular , Técnicas de Cultivo de Célula , Separación Celular/instrumentación , Células Cultivadas , Ratones , Células 3T3 NIH , Tamaño de la Partícula , Propiedades de Superficie
18.
J Basic Microbiol ; 53(4): 381-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22915066

RESUMEN

In this study, Saccharomyces cerevisiae was genetically engineered to harbor the capability of utilizing celluloses for bioethanol production by displaying active cellulolytic enzymes on the cell surface. An endo-1,4-ß-glucanase gene egX was cloned from Bacillus pumilus C-9 and its expression products, the EGX cellulases, were displayed on the cell surface of S. cerevisiae by fusing egX with aga2 that encodes the binding subunit of the S. cerevisiae cell wall protein α-agglutinin. To achieve high gene copies and stability, multicopy integration was obtained by integrating the fusion aga2-egX gene into the rDNA region of the S. cerevisiae chromosome. To achieve high expression and surface display efficiency, the aga2-egX gene was expressed under the control of a strong promoter. The presence of the enzymatically active cellulase fusion proteins on the S. cerevisiae cell surface was verified by carboxymethyl cellulase activity assay and immunofluorescence microscopy. This work presented a promising strategy to genetically engineer yeasts to perform efficient fermentation of cellulosic materials for bioethanol production.


Asunto(s)
Técnicas de Visualización de Superficie Celular/métodos , Celulasa/metabolismo , Celulosa/metabolismo , Etanol/metabolismo , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Bacillus/enzimología , Bacillus/genética , Biotecnología/métodos , Celulasa/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Expresión Génica , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN
19.
J Colloid Interface Sci ; 630(Pt B): 911-923, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36368131

RESUMEN

HYPOTHESIS: Designed antimicrobial lipopeptides (ALPs) offer the attractive benefits of short peptide sequences and flexible tuning of amphiphilicity by altering the acyl chain length. These lipopeptides kill microbes by forming intriguing in-membrane nanostructures and causing the leakage of internal contents. However, how subtle differences in the molecular structures of the lipopeptides affect their antimicrobial efficacy and biocompatibility to host cells is still under-investigated. EXPERIMENTS: This work focuses on assessing changes in the acyl chain length of CH3(CH2)n-2CO-KKKIII-NH2 (n = 10, 12 and 14, K = lysine, I = isoleucine, denoted as CnKI3) on the antimicrobial potency and cytotoxicity by combining biological assays with physical measurements. Aggregation properties were characterized by changes in critical aggregation concentration (CAC) from surface tension measurements. Antimicrobial susceptibility tests, cytotoxic MTT assays, haemolytic tests, and dynamic bactericidal experiments were employed to reveal their bioactive potency toward different types of cells. To further investigate lipopeptides' underlying antimicrobial and cytotoxic mechanisms, lipid monolayer and lipid small unilamellar vesicle (SUV) models were established and biophysically characterized. FINDINGS: An increase in n led to the decrease in the CAC of CnKI3, showing a rising membrane-lytic power. Subsequent bioactive measurements revealed the optimal performance of C12KI3 from this series of lipopeptides. The selective membrane binding behaviour was well supported by neutron reflection data from charged lipid monolayer models, revealing membrane-supported nanostructures of ALPs. However, increased membrane-lytic actions in C14KI3 led to notably increased toxicity and reduced selectivity. On the other hand, C14KI3 can impose faster dynamic killing than natural lipopeptide polymyxin B, showing the distinct impact of the amphiphilic balance from the designed lipopeptide. In contrast, the distinctly weaker binding to zwitterionic membrane models (monolayers and SUVs) provided direct nanoscale structural evidence to the mildness of the designed ALPs on host cells. This work demonstrates the high selectivity and fast killing of rationally designed short ALPs to microbes via in-membrane nanostructuring.


Asunto(s)
Antiinfecciosos , Lipopéptidos , Lipopéptidos/farmacología , Lipopéptidos/química , Antibacterianos/farmacología , Antibacterianos/química , Tensión Superficial , Secuencia de Aminoácidos
20.
J Colloid Interface Sci ; 637: 182-192, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36701864

RESUMEN

HYPOTHESIS: It is widely regarded that antimicrobial peptides (AMPs) kill bacteria by physically disrupting microbial membranes and causing cytoplasmic leakage, but it remains unclear how AMPs disrupt the outer membrane (OM) of Gram-negative bacteria (GNB) and then compromise the inner membrane. We hypothesise that different AMPs impose different structural disruptions, with direct implications to their antimicrobial efficacies. EXPERIMENTS: The antimicrobial activities of three typical AMPs, including the designed short AMP, G3, and two natural AMPs, melittin and LL37, against E. coli and their haemolytic activities were studied. Lipopolysaccharide (LPS) and anionic di-palmitoyl phosphatidyl glycerol (DPPG) monolayer models were constructed to mimic the outer membrane and inner membrane leaflets of Gram-negative bacteria. The binding and penetration of AMPs to the model lipid monolayers were systematically studied by neutron reflection via multiple H/D contrast variations. FINDING: G3 has relatively high antimicrobial activity, low cytotoxicity, and high proteolytic stability, whilst melittin has significant haemolysis and LL37 has weaker antimicrobial activity. G3 could rapidly lyse LPS and DPPG monolayers within 10-20 min. In contrast, melittin was highly active against the LPS membrane, but the dynamic process lasted up to 80 min, with excessive stacking in the OM. LL37 caused rather weak destruction to LPS and DPPG monolayers, leading to massive adsorption on the membrane surface without penetrating the lipid tail region. These findings demonstrate that the rationally designed AMP G3 was well optimised to impose most effective destruction to bacterial membranes, consistent with its highest bactericidal activity. These different interfacial structural features associated with AMP binding shed light on the future development of active and biocompatible AMPs for infection and wound treatments.


Asunto(s)
Antiinfecciosos , Lipopolisacáridos , Lipopolisacáridos/farmacología , Lipopolisacáridos/química , Péptidos Antimicrobianos , Meliteno/farmacología , Meliteno/metabolismo , Escherichia coli/metabolismo , Antiinfecciosos/química , Bacterias Gramnegativas/metabolismo , Bacterias/metabolismo , Membrana Celular/metabolismo , Antibacterianos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA