Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Parasitology ; 146(4): 527-532, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30409232

RESUMEN

Varroa destructor mites (Acari: Varroidae) are harmful ectoparasites of Apis mellifera honey bees. Female foundresses of wax-capped pupal host cells and their daughters feed on host fluids from open wounds on the host's integument. Details of V. destructor mite nutrition are forthcoming, and little is known about the potential physical effects on hosts from mite feeding. Chemical analysis of waste excretions can infer details of animals' nutrition. Here, chemical analysis by high-performance liquid chromatography/mass spectrometry (HPLC-MS/MS) of mite excretions showed that the purine content of V. destructor waste consists of guanine with traces of hypoxanthine. Traces of uric acid and caffeine were also detected. Concentrations of guanine attenuated over time and excretions collected from senescing mites did not contain detectable guanine. Non-reproducing individual female mites maintained in vitro, housed in gelatin capsules and provided a honey bee pupa, deposited an average of nearly 18 excretions daily, mostly on the host's integument rather than on the capsule wall. The weight and volume of excretions suggest mites can consume nearly a microlitre of host fluids each day. Compounded over 10 days, this together with open wounds, could lead to substantial water loss and stress to developing pupae.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Purinas/análisis , Espectrometría de Masas en Tándem/métodos , Varroidae/fisiología , Animales , Abejas/parasitología , Entomología/métodos , Heces/química , Femenino , Maryland , Varroidae/metabolismo
2.
MethodsX ; 9: 101884, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325380

RESUMEN

Complete separation of the trans-enantiomers of the two most abundant, persistent polar metabolites of metolachlor, metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid (MOXA), was achieved using UPLC equipped with a reverse phase chiral column and trace detection with an electrospray triple quadrupole mass spectrometer. Various conditions that influenced the separation and instrumental signal were investigated to achieve the optimum separation and instrument response within an analysis time of less than 30 minutes. Different eluting solvent compositions for each metabolite were required for optimized separation of of the 4 enantiomers. Standard curves were responsive to less than 13 ng/mL and 8 ng/mL for the least plentiful MOXA and MESA enantiomers, respectively with a linear coefficient of determination greater than 0.998. Suitability of the method for quantification of the 4 mixed enantiomers of each was demonstrated using natural surface water samples collected from the Choptank River watershed in Eastern Maryland.•LC chiral separation parameters were varied to achieve optimal separation of the major enantiomers of the two metolachlor metabolites.•LC/MS-MS parameters were adjusted to maximize response and minimize analysis time.•Finished methods were used to quantitate enantiomers in archived stream water extracts from agricultural watersheds with corn/soybean production.

3.
Anal Chem ; 83(15): 5873-80, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21644591

RESUMEN

We quantitatively studied, using X-ray photoelectron spectroscopy (XPS), oxidation of substrate-immobilized silver nanoparticles (Ag NPs) in a wide range of conditions, including exposure to ambient air and controlled ozone environment under UV irradiation, and we correlated the degree of silver oxidation with surface-enhanced Raman scattering (SERS) enhancement factors (EFs). The SERS activity of pristine and oxidized Ag NPs was assessed by use of trans-1,2-bis(4-pyridyl)ethylene (BPE) and sodium thiocynate as model analytes at the excitation wavelength of 532 nm. Our study showed that the exposure of Ag NPs to parts per million (ppm) level concentrations of ozone led to the formation of Ag(2)O and orders of magnitude reduction in SERS EFs. Such an adverse effect was also notable upon exposure of Ag NPs under ambient conditions where ozone existed at parts per billion (ppb) level. The correlated XPS and SERS studies suggested that formation of just a submonolayer of Ag(2)O was sufficient to decrease markedly the SERS EF of Ag NPs. In addition, studies of changes in plasmon absorption bands pointed to the chemical enhancement as a major reason for deterioration of SERS signals when substrates were pre-exposed to ambient air, and to a combination of changes in chemical and electromagnetic enhancements in the case of substrate pre-exposure to elevated ozone concentrations. Finally, we also found UV irradiation and ozone had a synergistic effect on silver oxidation and thus a detrimental effect on SERS enhancement of Ag NPs and that such oxidation effects were analyte-dependent, as a result of inherent differences in chemical enhancements and molecular binding affinities for various analytes.


Asunto(s)
Nanopartículas del Metal/química , Plata/química , Espectrometría Raman/métodos , Fulerenos/química , Oxidación-Reducción , Ozono/química , Espectroscopía de Fotoelectrones/métodos , Tiocianatos/análisis , Rayos Ultravioleta
4.
Langmuir ; 27(24): 15305-11, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22053870

RESUMEN

Monodisperse stimuli-responsive hydrogel capsules were synthesized in the 100-nm-diameter to 10-µm-diameter range from poly(4-vinylpyridine) (P4VP) and poly(ethyleneimine) (PEI) through a simple, efficient two-step cross-linking-precipitation template method under conditions of a good solvent. In this method, the core-shell particles were obtained by the deposition (heterocoagulation mechanism) of the cross-linked P4VP, PEI, or their mixtures on the surfaces of the template colloidal silica particles in nitromethane (for PEI) or a nitromethane-acetone mixture (for P4VP and P4VP-PEI mixtures) in the presence of cross-linker 1,4-diiodobutane. The cross-linked polymeric shell swollen in a good solvent stabilized the core-shell colloids. This mechanism provided the conditions for the synthesis of core-shell colloids in a submicrometer range of dimensions with an easily adjusted shell thickness (wall of the capsules) ranging from a few to hundreds of nanometers. The chemical composition of the shell was tuned by varying the ratio of co-cross-linked shell-forming polymers (P4VP and PEI). In the second step, the hollow capsules were obtained by etching the silica core in HF solutions. In this step, the colloidal stability of the hollow capsules was provided by ionized P4VP and PEI cross-linked shells. The hollow capsules demonstrate that the pH- and ionic-strength-triggered swelling and shrinking result in size-selective uptake and release properties. Cross-linked via quaternized functional groups, P4VP capsules undergo swelling and shrinking transitions at a physiologically relevant pH of around 6. The 200-nm-diameter hollow capsule with 25-nm-thick walls demonstrated a factor of 2 greater capacity to accommodate cargo molecules than the core-shell particles of the same dimensions because of an internal compartment and a combination of radial and a circumferential swelling modes in the capsules.

5.
AMB Express ; 11(1): 10, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33409670

RESUMEN

Ethanol extract of cell mass of Serratia marcescens strain N4-5, when applied as a treatment to cucumber seed, has been shown to provide control of the oomycete soil-borne plant pathogen Pythium ultimum equivalent to that provided by a seed-treatment chemical pesticide in some soils. Two dominant compounds in this extract, prodigiosin and the serratamolide serrawetin W1, were identified based on mass and collision induced dissociation mass fragmentation spectra. An additional four compounds with M+H+ masses (487, 541, 543, and 571) consistent with serratamolides reported in the literature were also detected. Several other compounds with M+H+ masses of 488, 536, 684, 834, 906, and 908 m/z were detected in this ethanol extract inconsistently over multiple liquid chromatography coupled with tandem mass spectrometry (LC/MS-MS) runs. A purified preparation of prodigiosin provided control of damping-off of cucumber caused by P. ultimum when applied as a seed treatment while ethanol extract of cell mass of strain Tn246, a transposon-mutant-derivative of strain N4-5, did not. Strain Tn246 contained a mini-Tn5 Km insertion in a prodigiosin biosynthetic gene and was deficient in production of prodigiosin. All other compounds detected in N4-5 extract were detected in the Tn246 extract. This is the first report demonstrating that prodigiosin can control a plant disease. Other compounds in ethanol extract of strain N4-5 may contribute to disease control.

6.
Langmuir ; 26(13): 10684-92, 2010 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-20462262

RESUMEN

Fluorescent silica nanoparticles decorated with a responsive shell, a mixed polymer brush, were synthesized. Specifically, a poly(2-vinylpyridine), P2VP, and poly(ethylene glycol), PEG, binary polymer brush was synthesized on silica nanoparticles via the "grafting to" technique. The selection of the components (PEG and P2VP) for the responsive brush shell was motivated by potential biomedical applications. Poly(glycidyl methacrylate), PGMA, labeled with Rhodamine B, RhB, was used to form a reactive and fluorescent shell on the nanoparticle surface. The interaction between the particles themselves and the particles and their environment can be precisely tuned by a change in pH. At lower pH, aqueous dispersions of the particles are stable, since PEG and P2VP are water-soluble, extended and contribute to the steric and electrostatic mechanisms of colloidal stability. An increase of pH to 6 causes a slow aggregation as a consequence of the hydrophobic attraction between the collapsed and almost nonprotonated P2VP macromolecules. The aggregation was well controlled and occurred within 90-120 min of the pH change. The aggregation was fully reversible after the decrease in pH. The pH variation did not quench the fluorescence of the colloidal suspensions. The pH-tunable aggregation of the fluorescent nanoparticles could find diverse applications for labeling and contrasting of cells and tissues when the size of the label and the intensity of the optical signals can be tuned by and related to the pH of the host environment.


Asunto(s)
Nanopartículas/química , Polietilenglicoles/química , Polímeros/química , Dióxido de Silicio/química , Concentración de Iones de Hidrógeno , Modelos Teóricos , Nanotecnología , Polivinilos/química
7.
J Colloid Interface Sci ; 310(2): 481-8, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17335841

RESUMEN

We report on a method of fabricating stimuli-responsive core-shell nanoparticles using block copolymers covalently bound to a silica nanoparticle surface. We used the "grafting to" approach to graft amphiphilic block copolymer brushes of poly(styrene-b-2-vinylpyridine-b-ethylene oxide) and poly(styrene-b-4-vinylpyridine) onto silica nanoparticles with two different diameters: colloidal silica 200 nm in diameter and fumed silica 15 nm in diameter. We used the pH-responsive properties of the grafted brush to regulate the interactions between the particles, and between the particles and their environment. We show that this behavior can be applied for a reversible formation of particle aggregates, and can be used to tune and stabilize the secondary aggregates of particles of the appropriate size and morphology in an aqueous environment. The suspensions of the particles form a textured hydrophilic coating on various substrates upon casting and the evaporation of water. Heating above the polymer's glass transition temperature or treatment in acidic water result in back and forth switching between superhydrophobic and hydrophilic surfaces, respectively.

8.
Langmuir ; 24(16): 8976-80, 2008 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-18597506

RESUMEN

Hierarchically organized single-nanoparticle structures synthesized in this work consisted of a 200 nm silica core and a pH-responsive poly(2-vinylpyridine) shell decorated with 15 nm gold nanoparticles. pH changes in the range of 3-6 back and forth results in a swelling-shrinking polymer brush shell and, thus, in the tuning distance between noble nanoparticles. A change in the interparticle distance is accompanied by a very pronounced shift in the maximum wavelength of the surface plasmon absorption peak. The dispersion of the resulting composite nanoparticles reversibly changed color from red to purple-blue as the pH changed from 2.5 to 6. Such hierarchically assembled nanostructures can be used as free-standing single-particle sensors in various miniaturized analytical systems.

9.
Langmuir ; 21(19): 8591-3, 2005 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-16142932

RESUMEN

A heteroarm star block copolymer made from seven polystyrene and seven poly(2-vinylpyridine) arms was grafted onto a solid substrate to fabricate a responsive polymer surface consisting of a densely packed monolayer of copolymer molecules. The grafted layer demonstrates a two-level hierarchical response upon external stimuli combining core-shell transitions of single stars with cooperative transitions of the interacting arms between "dimple" and "ripple" morphologies of the monolayer. The response allows for the switching of the surface properties upon changing solvent selectivity or pH of the aqueous environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA