Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nature ; 577(7791): 497-501, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31942074

RESUMEN

Ubiquitous processes in nature and the industry exploit crystallization from multicomponent environments1-5; however, laboratory efforts have focused on the crystallization of pure solutes6,7 and the effects of single growth modifiers8,9. Here we examine the molecular mechanisms employed by pairs of inhibitors in blocking the crystallization of haematin, which is a model organic compound with relevance to the physiology of malaria parasites10,11. We use a combination of scanning probe microscopy and molecular modelling to demonstrate that inhibitor pairs, whose constituents adopt distinct mechanisms of haematin growth inhibition, kink blocking and step pinning12,13, exhibit both synergistic and antagonistic cooperativity depending on the inhibitor combination and applied concentrations. Synergism between two crystal growth modifiers is expected, but the antagonistic cooperativity of haematin inhibitors is not reflected in current crystal growth models. We demonstrate that kink blockers reduce the line tension of step edges, which facilitates both the nucleation of crystal layers and step propagation through the gates created by step pinners. The molecular viewpoint on cooperativity between crystallization modifiers provides guidance on the pairing of modifiers in the synthesis of crystalline materials. The proposed mechanisms indicate strategies to understand and control crystallization in both natural and engineered systems, which occurs in complex multicomponent media1-3,8,9. In a broader context, our results highlight the complexity of crystal-modifier interactions mediated by the structure and dynamics of the crystal interface.


Asunto(s)
Hemina/química , Cristalización , Cinética , Método de Montecarlo
2.
J Chem Phys ; 161(10)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39254162

RESUMEN

We present a fundamental framework for the study of crystallization based on a combination of classical density functional theory and fluctuating hydrodynamics that is free of any assumptions regarding order parameters and that requires no input other than molecular interaction potentials. We use it to study the nucleation of both droplets and crystalline solids from a low-concentration solution of colloidal particles using two different interaction potentials. We find that the nucleation pathways of both droplets and crystals are remarkably similar at the early stages of nucleation until they diverge due to a rapid ordering along the solid pathways in line with the paradigm of "non-classical" crystallization. We compute the unstable modes at the critical clusters and find that despite the non-classical nature of solid nucleation, the size of the nucleating clusters remains the principle order parameter in all cases, supporting a "classical" description of the dynamics of crystallization. We show that nucleation rates can be extracted from our formalism in a systematic way. Our results suggest that in some cases, despite the non-classical nature of the nucleation pathways, classical nucleation theory can give reasonable results for solids but that there are circumstances where it may fail. This contributes a nuanced perspective to recent experimental and simulation work, suggesting that important aspects of crystal nucleation can be described within a classical framework.

3.
Phys Rev Lett ; 129(24): 246101, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36563279

RESUMEN

We use classical density functional theory (cDFT) to calculate fluid-solid surface tensions for fcc and bcc crystals formed by hard spheres and Lennard-Jones (LJ) particles. For hard spheres, our results show that the recently introduced "explicitly stable" functionals perform as well as the state of the art, and for both interaction potentials, our results compare well to simulation. We use the resulting bulk and interfacial energies for LJ to parametrize a capillary model for the free energy of small solid clusters and thereby determine the relative stability of bcc and fcc LJ clusters. We show a crossover from bcc to fcc stability as cluster size increases, thus providing insight into long-standing tension between simulation results and theoretical expectations. We also confirm that the bcc phase in contact with a vapor is unstable, thus extending earlier zero-temperature results. Our Letter demonstrates the potential of cDFT as an important tool in understanding crystallization and polymorphism.

4.
J Chem Phys ; 155(9): 094901, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496586

RESUMEN

The original derivation of power functional theory [M. Schmidt and J. M. Brader, J. Chem. Phys. 138, 214101 (2013)] is reworked in some detail with a view to clarifying and simplifying the logic and making explicit the various functional dependencies. We note various issues with the original development and suggest a modification that allows us to avoid them. In the process, we also suggest an alternative interpretation of our results, which bears surprising similarities to classical density functional theory.

5.
J Chem Phys ; 149(13): 134703, 2018 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-30292194

RESUMEN

Solvent-mediated interactions emerge from complex mechanisms that depend on the solute structure, its wetting properties, and the nature of the liquid. While numerous studies have focused on the first two influences, here, we compare the results from water and Lennard-Jones liquid in order to reveal to what extent solvent-mediated interactions are universal with respect to the nature of the liquid. Besides the influence of the liquid, the results were obtained with classical density functional theory and brute-force molecular dynamics simulations which allow us to contrast these two numerical techniques.

6.
Phys Rev Lett ; 116(1): 015501, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26799026

RESUMEN

Crystals grow by laying down new layers of material which can either correspond in size to the height of one unit cell (elementary steps) or multiple unit cells (macrosteps). Surprisingly, experiments have shown that macrosteps can grow under conditions of low supersaturation and high impurity density such that elementary step growth is completely arrested. We use atomistic simulations to show that this is due to two effects: the fact that the additional layers bias fluctuations in the position of the bottom layer towards growth and by a transition, as step height increases, from a 2D to a 3D nucleation mechanism.


Asunto(s)
Cristalización , Modelos Químicos , Cinética , Procesos Estocásticos
7.
Soft Matter ; 12(1): 93-8, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26439913

RESUMEN

Pan, Vekilov and Lubchenko [J. Phys. Chem. B, 2010, 114, 7620] have proposed that dense stable protein clusters appearing in weak protein solutions above the solubility curve are composed of protein oligomers. The hypothesis is that a weak solution of oligomer species is unstable with respect to condensation causing the formation of dense, oligomer-rich droplets which are stabilized against growth by the monomer-oligomer reaction. Here, we show that such a combination of processes can be understood using a simple capillary model yielding analytic expressions for the cluster properties which can be used to interpret experimental data. We also construct a microscopic Dynamic Density Functional Theory model and show that it is consistent with the predictions of the capillary model. The viability of the mechanism is thus confirmed and it is shown how the radius of the stable clusters is related to physically interesting quantities such as the monomer-oligomer rate constants.


Asunto(s)
Multimerización de Proteína , Acción Capilar , Estabilidad Proteica , Solubilidad
8.
Phys Rev Lett ; 114(24): 245501, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26196984

RESUMEN

Nanoscale self-assembly is naturally subject to impediments at the nanoscale. The recently developed ability to follow processes at the molecular level forces us to resolve older, coarse-grained concepts in terms of their molecular mechanisms. In this Letter, we highlight one such example. We present evidence based on experimental and simulation data that one of the cornerstones of crystal growth theory, the Cabrera-Vermilyea model of step advancement in the presence of impurities, is based on incomplete physics. We demonstrate that the piercing of an impurity fence by elementary steps is not solely determined by the Gibbs-Thomson effect, as assumed by Cabrera-Vermilyea. Our data show that for conditions leading up to growth cessation, step retardation is dominated by the formation of critically sized fluctuations. The growth recovery of steps is counter to what is typically assumed, not instantaneous. Our observations on mesoscopic impurities for lysozyme expose a nucleation-dominated regime of growth that has not been hitherto considered, where the system alternates between zero and near-pure velocity. The time spent by the system in arrest is the nucleation induction time required for the step to amass a supercritical fluctuation that pierces the impurity fence.


Asunto(s)
Cristalización/métodos , Modelos Químicos , Muramidasa/química , Cinética , Transición de Fase , Termodinámica
9.
J Chem Phys ; 138(24): 244908, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23822275

RESUMEN

It is shown that diffusion-limited classical nucleation theory (CNT) can be recovered as a simple limit of the recently proposed dynamical theory of nucleation based on fluctuating hydrodynamics [J. F. Lutsko, J. Chem. Phys. 136, 034509 (2012)]. The same framework is also used to construct a more realistic theory in which clusters have finite interfacial width. When applied to the dilute solution/dense solution transition in globular proteins, it is found that the extension gives corrections to the nucleation rate even for the case of small supersaturations due to changes in the monomer distribution function and to the excess free energy. It is also found that the monomer attachment/detachment picture breaks down at high supersaturations corresponding to clusters smaller than about 100 molecules. The results also confirm the usual assumption that most important corrections to CNT can be achieved by means of improved estimates of the free energy barrier. The theory also illustrates two topics that have received considerable attention in the recent literature on nucleation: the importance sub-dominant corrections to the capillary model for the free energy and of the correct choice of the reaction coordinate.

10.
J Chem Phys ; 136(13): 134502, 2012 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-22482567

RESUMEN

A recent description of diffusion-limited nucleation based on fluctuating hydrodynamics that extends classical nucleation theory predicts a very non-classical two-step scenario whereby nucleation is most likely to occur in spatially extended, low-amplitude density fluctuations. In this paper, it is shown how the formalism can be used to determine the maximum probability of observing any proposed nucleation pathway, thus allowing one to address the question as to their relative likelihood, including of the newly proposed pathway compared to classical scenarios. Calculations are presented for the nucleation of high-concentration droplets in a low-concentration solution of globular proteins and it is found that the relative probabilities (new theory compared to classical result) for reaching a critical nucleus containing N(c) molecules scales as e(-N(c)/3) thus indicating that for all but the smallest nuclei, the classical scenario is extremely unlikely.

11.
J Chem Phys ; 136(3): 034509, 2012 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-22280769

RESUMEN

A general theory of nucleation for colloids and macromolecules in solution is formulated within the context of fluctuating hydrodynamics. A formalism for the determination of nucleation pathways is developed and stochastic differential equations for the evolution of order parameters are given. The conditions under which the elements of classical nucleation theory are recovered are determined. The theory provides a justification and extension of more heuristic equilibrium approaches based solely on the free energy. It is illustrated by application to the low-concentration/high-concentration transition in globular proteins, where a novel two-step mechanism is identified, where the first step involves the formation of long-wavelength density fluctuations, and the second step is the actual nucleation event occurring within the fluctuation.


Asunto(s)
Coloides/química , Hidrodinámica , Sustancias Macromoleculares/química , Algoritmos
12.
J Chem Phys ; 137(15): 154903, 2012 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-23083187

RESUMEN

A recently formulated description of homogeneous nucleation for Brownian particles in the over-damped limit based on fluctuating hydrodynamics is used to determine the nucleation pathway, characterized as the most likely path (MLP), for the nucleation of a dense-concentration droplet of globular protein from a dilute solution in a small, finite container. The calculations are performed by directly discretizing the equations for the MLP and it is found that they confirm previous results obtained for infinite systems: the process of homogeneous nucleation begins with a long-wavelength, spatially-extended concentration fluctuation that condenses to form the pre-critical cluster. This is followed by a classical growth processes. The calculations show that the post-critical growth involves the formation of a depletion zone around the cluster whereas no such depletion is observed in the pre-critical cluster. The approach therefore captures dynamical effects not found in classical density functional theory studies while consistently describing the formation of the pre-critical cluster.

13.
Phys Rev E ; 105(3-1): 034120, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35428042

RESUMEN

Classical density functional theory for finite temperatures is usually formulated in the grand-canonical ensemble where arbitrary variations of the local density are possible. However, in many cases the systems of interest are closed with respect to mass, e.g., canonical systems with fixed temperature and particle number. Although the tools of standard, grand-canonical density functional theory are often used in an ad hoc manner to study closed systems, their formulation directly in the canonical ensemble has so far not been known. In this work, the fundamental theorems underlying classical DFT are revisited and carefully compared in the two ensembles showing that there are only trivial formal differences. The practicality of DFT in the canonical ensemble is then illustrated by deriving the exact Helmholtz functional for several systems: the ideal gas, certain restricted geometries in arbitrary numbers of dimensions, and, finally, a system of two hard spheres in one dimension (hard rods) in a small cavity. Some remarkable similarities between the ensembles are apparent even for small systems with the latter showing strong echoes of the famous exact of result of Percus in the grand-canonical ensemble.

14.
Phys Rev E ; 106(6-1): 064110, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36671108

RESUMEN

Classical density functional theory is used to determine the fluid-solid surface tensions for low-index faces of crystals of hard spheres and Lennard-Jones particles. The calculations make use of the recently introduced explicitly stable fundamental measure theory model for hard spheres, and we show that this gives state-of-the-art accuracy compared to simulation. For the Lennard-Jones system, results are presented for both solid-liquid and solid-vapor interfaces, and in both cases the FCC results compare favorably with existing results from the literature. We find that the BCC crystal has significantly lower solid-liquid surface tension than the FCC structure. For the solid-vapor interface, our results indicate that the BCC phase is unstable with respect to transition to the HCP structure, in agreement with various zero-temperature results in the literature.


Asunto(s)
Gases , Tensión Superficial , Transición de Fase , Teoría Funcional de la Densidad , Temperatura , Simulación por Computador
15.
J Chem Phys ; 134(16): 164501, 2011 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21528967

RESUMEN

The squared-gradient approximation to the modified-core Van der Waals density functional theory model is developed. A simple, explicit expression for the SGA coefficient involving only the bulk equation of state and the interaction potential is given. The model is solved for planar interfaces and spherical clusters and is shown to be quantitatively accurate in comparison to computer simulations. An approximate technique for solving the SGA based on piecewise-linear density profiles is introduced and is shown to give reasonable zeroth-order approximations to the numerical solution of the model. The piecewise-linear models of spherical clusters are shown to be a natural extension of classical nucleation theory and serve to clarify some of the nonclassical effects previously observed in liquid-vapor nucleation. Nucleation pathways are investigated using both constrained energy-minimization and steepest-descent techniques.

16.
J Chem Phys ; 135(16): 161101, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22047221

RESUMEN

Homogeneous nucleation is formulated within the context of fluctuating hydrodynamics. It is shown that for a colloidal system in the strong damping limit the most likely path for nucleation can be determined by gradient descent in density space governed by a nontrivial metric. This is illustrated by application to low-density/high-density liquid transition of globular proteins in solution where it is shown that nucleation process involves two stages: the formation of an extended region with enhanced density followed by the formation of a cluster within this region.


Asunto(s)
Coloides/química , Transición de Fase , Proteínas/química , Hidrodinámica , Termodinámica
17.
Langmuir ; 26(11): 8510-6, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20222718

RESUMEN

The effect of molecule size (excluded volume) and the range of interaction on the surface tension, phase diagram, and nucleation properties of a model globular protein is investigated using a combination of Monte Carlo simulations and finite temperature classical density functional theory calculations. We use a parametrized potential that can vary smoothly from the standard Lennard-Jones interaction characteristic of simple fluids to the ten Wolde-Frenkel model for the effective interaction of globular proteins in solution. We find that the large excluded volume characteristic of large macromolecules such as proteins is the dominant effect in determining the liquid-vapor surface tension and nucleation properties. The variation of the range of the potential is important only in the case of small excluded volumes such as for simple fluids. The DFT calculations are then used to study the homogeneous nucleation of the high-density phase from the low-density phase including the nucleation barriers, nucleation pathways, and rate. It is found that the nucleation barriers are typically only a few k(B)T and that the nucleation rates are substantially higher than would be predicted by classical nucleation theory.


Asunto(s)
Modelos Teóricos , Proteínas/química , Método de Montecarlo , Tensión Superficial
18.
J Chem Phys ; 132(3): 035102, 2010 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-20095752

RESUMEN

Recent observations of the growth of protein crystals have identified two different growth regimes. At low supersaturation, the surface of the crystal is smooth and increasing in size due to the nucleation of steps at defects and the subsequent growth of the steps. At high supersaturation, nucleation occurs at many places simultaneously, the crystal surface becomes rough, and the growth velocity increases more rapidly with increasing supersaturation than in the smooth regime. Kinetic roughening transitions are typically assumed to be due to the vanishing of the barrier for two-dimension nucleation on the surface of the crystal. We show here, by means of both analytic mean-field models and kinetic Monte Carlo simulations, that a transition between different growth modes reminiscent of kinetic roughening can also arise as a kinetic effect occurring at finite nucleation barriers.


Asunto(s)
Cristalización , Cinética , Modelos Químicos , Método de Montecarlo , Solubilidad , Propiedades de Superficie , Termodinámica
19.
J Chem Phys ; 132(16): 164701, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20441299

RESUMEN

We propose in this paper a generic model of a nonstandard aggregation mechanism for self-assembly processes of a class of materials involving the mediation of intermediates consisting of a polydisperse population of nanosized particles. The model accounts for a long induction period in the process. The proposed mechanism also gives insight on future experiments aiming at a more comprehensive picture of the role of self-organization in self-assembly processes.


Asunto(s)
Modelos Químicos , Nanopartículas/química , Cinética
20.
Phys Rev E ; 102(6-1): 062137, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33465965

RESUMEN

The derivation of the state of the art tensorial versions of Fundamental Measure Theory (a form of classical Density Functional Theory for hard spheres) is reexamined in the light of the recently introduced concept of global stability of the density functional based on its boundedness [Lutsko and Lam, Phys. Rev. E 98, 012604 (2018)2470-004510.1103/PhysRevE.98.012604]. It is shown that within the present paradigm, explicit stability of the functional can be achieved only at the cost of giving up accuracy at low densities. It is argued that this is an acceptable trade-off since the main value of DFT lies in the study of dense systems. Explicit calculations for a wide variety of systems show that a proposed explicitly stable functional is competitive in all ways with the popular White Bear models while sharing some of their weaknesses when applied to non-close-packed solids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA