Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37373399

RESUMEN

Abdominal aortic aneurysm (AAA) is hallmarked by irreversible dilation of the infrarenal aorta. Lipid deposition in the aortic wall and the potential importance of a lipid disorder in AAA etiology highlight the need to explore lipid variation during AAA development. This study aimed to systematically characterize the lipidomics associated with AAA size and progression. Plasma lipids from 106 subjects (36 non-AAA controls and 70 AAA patients) were comprehensively analyzed using untargeted lipidomics. An AAA animal model was established by embedding angiotensin-II pump in ApoE-/- mice for four weeks and blood was collected at 0, 2 and 4 weeks for lipidomic analysis. Using a false-discovery rate (FDR) < 0.05, a group of lysophosphatidylcholines (lysoPCs) were specifically decreased in AAA patients and mice. LysoPCs were principally lower in the AAA patients with larger diameter (diameter > 50 mm) than those with a smaller size (30 mm < diameter < 50 mm), and levels of lysoPCs were also found to be decreased with modelling time and aneurysm formation in AAA mice. Correlation matrices between lipids and clinical characteristics identified that the positive correlation between lysoPCs and HDL-c was reduced and negative correlations between lysoPCs and CAD rate, lysoPCs and hsCRP were converted to positive correlations in AAA compared to control. Weakened positive correlations between plasma lysoPCs and circulating HDL-c in AAA suggested that HDL-lysoPCs may elicit instinctive physiological effects in AAA. This study provides evidence that reduced lysoPCs essentially underlie the pathogenesis of AAA and that lysoPCs are promising biomarkers for AAA development.


Asunto(s)
Aneurisma de la Aorta Abdominal , Lipidómica , Ratones , Animales , Lisofosfatidilcolinas , Aneurisma de la Aorta Abdominal/patología , Aorta Abdominal , Biomarcadores , Angiotensina II , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
2.
Surg Radiol Anat ; 42(8): 865-870, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32424683

RESUMEN

PURPOSE: Venous thoracic outlet syndrome (VTOS) is a compressive disorder of subclavian vein (SCV); we aimed to investigate the role of costoclavicular ligament (CCL) in the pathogenesis of VTOS. METHODS: A cadaver study was carried out to investigate the presence and morphology of CCL in thoracic outlet regions, as well as its relationship with the SCV. Six formalin-fixed adult cadavers were included, generating 12 dissections of costoclavicular regions (two sides per cadaver). Once CCL was identified, observation and measurement were made of its morphology and dimensions, and its relationship with SCV was studied. To take a step further, a clinical VTOS case was reported to prove the anatomical findings. RESULTS: Two out of twelve costoclavicular regions (2/12, 16.7%) were found to possess CCLs. Both ligaments were located in the left side of two male cadavers and were closely attached to the lateral aspect of sternoclavicular joint capsules. The lateral fibers of the ligament proceed in a superolateral-to-inferomedial manner, while the medial fibers proceed more vertically. Both ligaments were tightly adherent to the SCV, causing significant compression on the vein. In the clinical case, multiple bunches of CCLs were found to compress the SCV tightly intraoperatively. After removing the ligaments, the patient's symptom kept relief during a follow-up period of 2 years. CONCLUSION: Our study demonstrated that CCL could be a novel cause of VTOS by severe compression of SCV. Patients diagnosed with this etiology could get less invasive surgical treatment by simply removing the ligament.


Asunto(s)
Clavícula/anomalías , Ligamentos/anomalías , Costillas/anomalías , Vena Subclavia/patología , Síndrome del Desfiladero Torácico/etiología , Angioplastia de Balón , Cadáver , Descompresión Quirúrgica/métodos , Femenino , Humanos , Ligamentos/cirugía , Masculino , Persona de Mediana Edad , Flebografía , Vena Subclavia/diagnóstico por imagen , Síndrome del Desfiladero Torácico/diagnóstico , Síndrome del Desfiladero Torácico/cirugía , Resultado del Tratamiento
3.
Exp Biol Med (Maywood) ; 248(20): 1785-1798, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37845830

RESUMEN

Carotid body tumors (CBTs) are a rare type of paraganglioma, and surgical resection is the only effective treatment. Because of the proximity of CBTs to the carotid artery, jugular vein, and cranial nerve, surgery is extremely difficult, with high risks of hemorrhage and neurovascular injury. The Shamblin classification is used for CBT clinical evaluation; however, molecular mechanisms underlying classification differences remain unclear. This study aimed to investigate pathogenic mechanisms and molecular differences between CBT types. In Shamblin I, II, and III tumors, differentially expressed proteins (DEPs) were identified using direct data-independent acquisition (DIA). DEPs were validated using immunohistochemistry. Proteomics profiling of three Shamblin subtypes differed significantly. Bioinformatics analysis showed that adrenomedullin signaling, protein kinase A signaling, vascular endothelial growth factor (VEGF) signaling, ephrin receptor signaling, gap junction signaling, interleukin (IL)-1 signaling, actin cytoskeleton signaling, endothelin-1 signaling, angiopoietin signaling, peroxisome proliferator-activated receptor (PPAR) signaling, bone morphogenetic protein (BMP) signaling, hypoxia-inducible factor 1-alpha (HIF-1α) signaling, and IL-6 signaling pathways were significantly enriched. Furthermore, 60 DEPs changed significantly with tumor progression. Immunohistochemistry validated several important DEPs, including aldehyde oxidase 1 (AOX1), mediator complex subunit 22 (MED22), carnitine palmitoyltransferase 1A (CPT1A), and heat shock transcription factor 1 (HSF1). To our knowledge, this is the first application of proteomics quantification in CBT. Our results will deepen the understanding of CBT-related pathogenesis and aid in identifying therapeutic targets for CBT treatment.


Asunto(s)
Tumor del Cuerpo Carotídeo , Humanos , Tumor del Cuerpo Carotídeo/patología , Tumor del Cuerpo Carotídeo/cirugía , Proteómica , Factor A de Crecimiento Endotelial Vascular , Estudios Retrospectivos , Arterias Carótidas , Resultado del Tratamiento
4.
J Clin Med ; 12(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36835806

RESUMEN

Aortic aneurysm and dissection (AAD) is a life-threatening disease worldwide. Recently, fluoroquinolones have been reported to significantly increase the risk of AAD. This study aimed to investigate the potential functional mechanism and molecular targets of fluoroquinolones in relation to AAD by an integrated proteomic and network pharmacology strategy. A total of 1351 differentially expressed proteins were identified in human aortic vascular smooth muscle cells (VSMCs) after ciprofloxacin (CIP) stimulation. The functional analysis emphasized the important roles of metabolism, extracellular matrix homeostasis, mitochondrial damage, focal adhesion, and apoptosis in CIP-stimulated VSMCs. CIP targets were predicted with online databases and verified by molecular docking. Protein-protein interaction (PPI) analysis and module construction of the 34 potential CIP targets and 37 selected hub molecules after CIP stimulation identified four critical target proteins in the module: PARP1, RAC1, IGF1R and MKI67. Functional analysis of the PPI module showed that the MAPK signalling pathway, focal adhesion, apoptosis, regulation of actin cytoskeleton, and PI3K-Akt signalling pathway were significantly enriched. Our results will provide novel insights into the pathogenic mechanism of fluoroquinolones in aortic diseases.

5.
PeerJ ; 10: e13129, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35637715

RESUMEN

Background: Abdominal aortic aneurysm (AAA) is a disease of high prevalence in old age, and its incidence gradually increases with increasing age. There were few studies about differences in the circulatory system in the incidence of AAA, mainly because younger patients with AAA are fewer and more comorbid nonatherosclerotic factors. Method: We induced AAA in ApoE-/- male mice of different ages (10 or 24 weeks) and obtained plasma samples. After the top 14 most abundant proteins were detected, the plasma was analyzed by a proteomic study using the data-dependent acquisition (DDA) technique. The proteomic results were compared between different groups to identify age-related differentially expressed proteins (DEPs) in the circulation that contribute to AAA formation. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) network analyses were performed by R software. The top 10 proteins were determined with the MCC method of Cytoscape, and transcription factor (TF) prediction of the DEPs was performed with iRegulon (Cytoscape). Results: The aortic diameter fold increase was higher in the aged group than in the youth group (p < 0.01). Overall, 92 DEPs related to age and involved in AAA formation were identified. GO analysis of the DEPs showed enrichment of the terms wounding healing, response to oxidative stress, regulation of body fluid levels, ribose phosphate metabolic process, and blood coagulation. The KEGG pathway analysis showed enrichment of the terms platelet activation, complement and coagulation cascades, glycolysis/gluconeogenesis, carbon metabolism, biosynthesis of amino acids, and ECM-receptor interaction. The top 10 proteins were Tpi1, Eno1, Prdx1, Ppia, Prdx6, Vwf, Prdx2, Fga, Fgg, and Fgb, and the predicted TFs of these proteins were Nfe2, Srf, Epas1, Tbp, and Hoxc8. Conclusion: The identified proteins related to age and involved in AAA formation were associated with the response to oxidative stress, coagulation and platelet activation, and complement and inflammation pathways, and the TFs of these proteins might be potential targets for AAA treatments. Further experimental and biological studies are needed to elucidate the role of these age-associated and AAA-related proteins in the progression of AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Proteómica , Masculino , Animales , Ratones , Regulación de la Expresión Génica , Aneurisma de la Aorta Abdominal/genética , Mapas de Interacción de Proteínas , Envejecimiento
6.
Front Cardiovasc Med ; 9: 875434, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017103

RESUMEN

Objectives: Abdominal aortic aneurysm (AAA) is a cardiovascular disease with high mortality and pathogenesis closely related to various cell death types, e.g., autophagy, apoptosis and pyroptosis. However, the association between AAA and ferroptosis is unknown. Methods: GSE57691 and GSE98278 dataset were obtained from the Gene Expression Omnibus database, and a ferroptosis-related gene (FRG) set was downloaded from the FerrDb database. These data were normalized, and ferroptosis-related differentially expressed genes (FDEGs, AAA vs. normal samples) were identified using the limma package in R. FRGs expression was analyzed by Gene Set Expression Analysis (GSEA), and FDEGs were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) pathway enrichment analyses using the clusterProfiler package in R and ClueGO in Cytoscape. Protein-protein interaction networks were assembled using Cytoscape, and crucial FDEGs were identified using CytoHubba. Critical FDEG transcription factors (TFs) were predicted with iRegulon. FDEGs were verified in GSE98278 set, and key FDEGs in AAA (compared with normal samples) and ruptured AAA (RAAA; compared with AAA samples) were identified. Ferroptosis-related immune cell infiltration and correlations with key genes were analyzed by CIBERSORT. Key FEDGs were reverified in Ang II-induced AAA models of ApoE-/- and CD57B/6J mice by immunofluorescence assay. Results: In AAA and normal samples, 40 FDEGs were identified, and the expression of suppressive FRGs was significantly downregulated with GSEA. For FDEGs, the GO terms were response to oxidative stress and cellular response to external stimulus, and the KEGG pathways were the TNF and NOD-like receptor signaling pathways. IL6, ALB, CAV1, PTGS2, NOX4, PRDX6, GPX4, HSPA5, HSPB1, and NCF2 were the most enriched genes in the crucial gene cluster. CEBPG, NFAT5, SOX10, GTF2IRD1, STAT1, and RELA were potential TFs affecting these crucial genes. Ferroptosis-related immune cells involved in AAA formation were CD8+ T, naive CD4+ T, and regulatory T cells (Tregs); M0 and M2 macrophages; and eosinophils. Tregs were also involved in RAAA. GPX4, SLC2A1, and PEBP1 expression was downregulated in both the RAAA and AAA samples. GPX4 and PEBP1 were more important in AAA because they influenced ferroptosis-related immune cell infiltration, and SLC2A1 was more important in RAAA. Conclusions: This is the first study to show that ferroptosis is crucial to AAA/RAAA formation. The TNF and NOD-like signaling pathways and ferroptosis-related immune cell infiltration play key roles in AAA/RAAA. GPX4 is a key ferroptosis-related gene in AAA. Ferroptosis and related genes might be promising targets in the treatment of AAA/RAAA.

7.
J Proteomics ; 268: 104702, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35988846

RESUMEN

Apolipoprotein knockout (ApoE-/-) and CD57BL/6J mouse models of angiotensin II (Ang II)-induced abdominal aortic aneurysm (AAA) are commonly used in AAA research. However, the similarities and differences in the molecular mechanisms of AAA in these two genotypes have not been reported. In our study, we analyzed proteomics data from ApoE-/- and CD57BL/6J mouse models of Ang II-induced AAA and control mice by LC-MS/MS. Gene set enrichment analysis (GSEA) of differentially abundance proteins (DAPs) in the ApoE-/- or CD57BL/6J mouse groups was performed in R software, and infiltration of immune cells in groups was assessed. DAP that showed the same trend in abundance in ApoE-/- and CD57BL/6J mice (S-DAP) were identified and subjected to GO enrichment, KEGG pathway, and connectivity map (CMap) analyses. The protein-protein interaction (PPI) network of the S-DAP was drawn, the key S-DAP were identified by MCODE, and the transcription factors (TFs) of crucial S-DAP were predicted by iRegulon in Cytoscape. Male ApoE-/- and CD57BL/6J mouse models of Ang II-induced AAA are commonly used in AAA research, and extracellular matrix organization is associated with AAA in both of these models. However, there are some differences between the mechanisms underlying AAA in these two genotypes, and these differences need to be considered when studying AAA and selecting models. SIGNIFICANCE: Our research provided the first insight into the similarity and differential mechanisms of Ang II infused AAA models using ApoE-/- and CD57BL/6J mice. This study might provide the some advises for the selection of Ang II infused AAA models for further AAA researches.


Asunto(s)
Angiotensina II , Aneurisma de la Aorta Abdominal , Angiotensina II/efectos adversos , Animales , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/metabolismo , Apolipoproteínas E/efectos adversos , Apolipoproteínas E/genética , Cromatografía Liquida , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteómica , Espectrometría de Masas en Tándem , Factores de Transcripción
8.
J Cardiovasc Dev Dis ; 9(9)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36135436

RESUMEN

Background: B cells and autoantibodies play an important role in the pathogenesis of abdominal aortic aneurysm (AAA). IgG glycosylations are highly valued as potential disease biomarkers and therapeutic targets. Methods: Lectin microarray was applied to analyze the expression profile of serum IgG glycosylation in 75 patients with AAA, 68 autoimmune disease controls, and 100 healthy controls. Lectin blots were performed to validate the differences. The clinical relevance of lectins binding from the microarray results was explored in AAA patients. Results: Significantly lower binding level of SBA (preferred GalNAc) was observed for the AAA group compared with DCs (p < 0.001) and HCs (p = 0.049). A significantly lower binding level of ConA (preferred mannose) was observed in patients with aneurysm diameter >5 cm. Significantly higher binding of CSA (preferred GalNAc) was present for dyslipidemia patients, whereas a lower binding level of AAL (preferred fucose) was observed for hypertensive patients. Patients with diabetes had lower binding levels of IRA (preferred GalNAc) and HPA (preferred GalNAc) compared with those not with DM. PTL-L (R = 0.36, p = 0.0015, preferred GalNAc) was positively associated with aneurysm diameters, whereas DSL (R = 0.28, p = 0.014, preferred (GlcNAc)2-4) was positively associated with patients' age. Symptomatic patients had a lower binding level of ConA (p = 0.032), and patients with coronary heart disease had higher binding levels of STL (p = 0.0029, preferred GlcNAc). Patients with ILT bound less with black bean crude (p = 0.04, preferred GalNAc). Conclusions: AAA was associated with a decreased IgG binding level of SBA (recognizing glycan GalNAc). Symptomatic patients with aneurysm <5 cm had a higher binding level of ConA (preferred mannose). Coronary heart disease and elder age were associated with increased IgG bisecting GlcNAc. IgG O-glycosylation (GalNAc) may play an important role in AAA pathogenesis and progression.

9.
Biomolecules ; 12(12)2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36551281

RESUMEN

Abdominal aortic aneurysm (AAA) is a potentially life-threatening disease that is common in the aging population. Currently, there are no approved diagnostic biomarkers or therapeutic drugs for AAA. We aimed to identify novel plasma biomarkers or potential therapeutic targets for AAA using a high-throughput protein array-based method. Proteomics expression profiles were investigated in plasma from AAA patients and healthy controls (HC) using 440-cytokine protein array analysis. Several promising biomarkers were further validated in independent cohorts using enzyme-linked immunosorbent assay (ELISA). Thirty-nine differentially expressed plasma proteins were identified between AAA and HC. Legumain (LGMN) was significantly higher in AAA patients and was validated in another large cohort. Additionally, "AAA without diabetes" (AAN) patients and "AAA complicated with type 2 diabetes mellitus" (AAM) patients had different cytokine expression patterns in their plasma, and nine plasma proteins were differentially expressed among the AAN, AAM, and HC subjects. Delta-like protein 1 (DLL1), receptor tyrosine-protein kinase erbB-3 (ERBB3), and dipeptidyl peptidase 4 (DPPIV) were significantly higher in AAM than in AAN. This study identified several promising plasma biomarkers of AAA. Their role as therapeutic targets for AAA warrants further investigation.


Asunto(s)
Aneurisma de la Aorta Abdominal , Diabetes Mellitus Tipo 2 , Humanos , Anciano , Análisis por Matrices de Proteínas , Diabetes Mellitus Tipo 2/diagnóstico , Aneurisma de la Aorta Abdominal/metabolismo , Biomarcadores , Citocinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA