Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Am J Physiol Renal Physiol ; 325(5): F656-F668, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37706232

RESUMEN

The circadian clock protein basic helix-loop-helix aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) is a transcription factor that impacts kidney function, including blood pressure (BP) control. Previously, we have shown that male, but not female, kidney-specific cadherin Cre-positive BMAL1 knockout (KS-BMAL1 KO) mice exhibit lower BP compared with littermate controls. The goal of this study was to determine the BP phenotype and immune response in male KS-BMAL1 KO mice in response to a low-K+ high-salt (LKHS) diet. BP, renal inflammatory markers, and immune cells were measured in male mice following an LKHS diet. Male KS-BMAL1 KO mice had lower BP following the LKHS diet compared with control mice, yet their circadian rhythm in pressure remained unchanged. Additionally, KS-BMAL1 KO mice exhibited lower levels of renal proinflammatory cytokines and immune cells following the LKHS diet compared with control mice. KS-BMAL1 KO mice were protected from the salt-sensitive hypertension observed in control mice and displayed an attenuated immune response following the LKHS diet. These data suggest that BMAL1 plays a role in driving the BP increase and proinflammatory environment that occurs in response to an LKHS diet.NEW & NOTEWORTHY We show here, for the first time, that kidney-specific BMAL1 knockout mice are protected from blood pressure (BP) increases and immune responses to a salt-sensitive diet. Other kidney-specific BMAL1 knockout models exhibit lower BP phenotypes under basal conditions. A salt-sensitive diet exacerbates this genotype-specific BP response, leading to fewer proinflammatory cytokines and immune cells in knockout mice. These data demonstrate the importance of distal segment BMAL1 in BP and immune responses to a salt-sensitive environment.


Asunto(s)
Factores de Transcripción ARNTL , Hipertensión , Animales , Masculino , Ratones , Factores de Transcripción ARNTL/metabolismo , Presión Sanguínea/fisiología , Ritmo Circadiano/fisiología , Citocinas , Dieta , Hipertensión/genética , Hipertensión/prevención & control , Riñón/metabolismo , Ratones Noqueados , Cloruro de Sodio Dietético
2.
Arch Toxicol ; 97(3): 893-908, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36645448

RESUMEN

Current approaches for the assessment of environmental and human health risks due to exposure to chemical substances have served their purpose reasonably well. Nevertheless, the systems in place for different uses of chemicals are faced with various challenges, ranging from a growing number of chemicals to changes in the types of chemicals and materials produced. This has triggered global awareness of the need for a paradigm shift, which in turn has led to the publication of new concepts for chemical risk assessment and explorations of how to translate these concepts into pragmatic approaches. As a result, next-generation risk assessment (NGRA) is generally seen as the way forward. However, incorporating new scientific insights and innovative approaches into hazard and exposure assessments in such a way that regulatory needs are adequately met has appeared to be challenging. The European Partnership for the Assessment of Risks from Chemicals (PARC) has been designed to address various challenges associated with innovating chemical risk assessment. Its overall goal is to consolidate and strengthen the European research and innovation capacity for chemical risk assessment to protect human health and the environment. With around 200 participating organisations from all over Europe, including three European agencies, and a total budget of over 400 million euro, PARC is one of the largest projects of its kind. It has a duration of seven years and is coordinated by ANSES, the French Agency for Food, Environmental and Occupational Health & Safety.


Asunto(s)
Medición de Riesgo , Humanos , Europa (Continente)
3.
Am J Physiol Renal Physiol ; 322(4): F449-F459, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35129370

RESUMEN

PERIOD 1 (PER1) is a circadian clock transcription factor that is regulated by aldosterone, a hormone that increases blood volume and Na+ retention to increase blood pressure. Male global Per1 knockout (KO) mice develop reduced night/day differences in Na+ excretion in response to a high-salt diet plus desoxycorticosterone pivalate treatment (HS + DOCP), a model of salt-sensitive hypertension. In addition, global Per1 KO mice exhibit higher aldosterone levels on a normal-salt diet. To determine the role of Per1 in the kidney, male kidney-specific Per1 KO (KS-Per1 KO) mice were generated using Ksp-cadherin Cre recombinase to remove exons 2-8 of Per1 in the distal nephron and collecting duct. Male KS-Per1 KO mice have increased Na+ retention but have normal diurnal differences in Na+ excretion in response to HS + DOCP. The increased Na+ retention is associated with altered expression of glucocorticoid and mineralocorticoid receptors, increased serum aldosterone, and increased medullary endothelin-1 compared with control mice. Adrenal gland gene expression analysis revealed that circadian clock and aldosterone synthesis genes have altered expression in KS-Per1 KO mice compared with control mice. These results emphasize the importance of the circadian clock not only in maintaining rhythms of physiological functions but also for adaptability in response to environmental cues, such as HS + DOCP, to maintain overall homeostasis. Given the prevalence of salt-sensitive hypertension in the general population, these findings have important implications for our understanding of how circadian clock proteins regulate homeostasis.NEW & NOTEWORTHY For the first time, we show that knockout of the circadian clock transcription factor PERIOD 1 using kidney-specific cadherin Cre results in increased renal Na+ reabsorption, increased aldosterone levels, and changes in gene expression in both the kidney and adrenal gland. Diurnal changes in renal Na+ excretion were not observed, demonstrating that the clock protein PER1 in the kidney is important for maintaining homeostasis and that this effect may be independent of time of day.


Asunto(s)
Aldosterona , Relojes Circadianos , Hipertensión , Riñón , Proteínas Circadianas Period , Aldosterona/sangre , Animales , Cadherinas/metabolismo , Relojes Circadianos/genética , Expresión Génica , Riñón/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Sodio/metabolismo , Cloruro de Sodio Dietético/metabolismo
4.
Am J Physiol Renal Physiol ; 320(4): F596-F607, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33554781

RESUMEN

Epithelial Na+ channel (ENaC) blockers elicit acute and substantial increases of urinary pH. The underlying mechanism remains to be understood. Here, we evaluated if benzamil-induced urine alkalization is mediated by an acute reduction in H+ secretion via renal H+-K+-ATPases (HKAs). Experiments were performed in vivo on HKA double-knockout and wild-type mice. Alterations in dietary K+ intake were used to change renal HKA and ENaC activity. The acute effects of benzamil (0.2 µg/g body wt, sufficient to block ENaC) on urine flow rate and urinary electrolyte and acid excretion were monitored in anesthetized, bladder-catheterized animals. We observed that benzamil acutely increased urinary pH (ΔpH: 0.33 ± 0.07) and reduced NH4+ and titratable acid excretion and that these effects were distinctly enhanced in animals fed a low-K+ diet (ΔpH: 0.74 ± 0.12), a condition when ENaC activity is low. In contrast, benzamil did not affect urine acid excretion in animals kept on a high-K+ diet (i.e., during high ENaC activity). Thus, urine alkalization appeared completely uncoupled from ENaC function. The absence of benzamil-induced urinary alkalization in HKA double-knockout mice confirmed the direct involvement of these enzymes. The inhibitory effect of benzamil was also shown in vitro for the pig α1-isoform of HKA. These results suggest a revised explanation of the benzamil effect on renal acid-base excretion. Considering the conditions used here, we suggest that it is caused by a direct inhibition of HKAs in the collecting duct and not by inhibition of the ENaC function.NEW & NOTEWORTHY Bolus application of epithelial Na+ channel (EnaC) blockers causes marked and acute increases of urine pH. Here, we provide evidence that the underlying mechanism involves direct inhibition of the H+-K+ pump in the collecting duct. This could provide a fundamental revision of the previously assumed mechanism that suggested a key role of ENaC inhibition in this response.


Asunto(s)
Amilorida/análogos & derivados , Canales Epiteliales de Sodio/efectos de los fármacos , ATPasa Intercambiadora de Hidrógeno-Potásio/efectos de los fármacos , Sodio/metabolismo , Amilorida/farmacología , Animales , Canales Epiteliales de Sodio/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Túbulos Renales Colectores/metabolismo , Ratones , Natriuresis/efectos de los fármacos , Eliminación Renal/efectos de los fármacos , Eliminación Renal/fisiología , Sodio en la Dieta/metabolismo
5.
J Environ Manage ; 290: 112668, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33895445

RESUMEN

The SARS-CoV-2 virus has spread globally and has severely impacted public health and the economy. Hand hygiene, social distancing, and the usage of personal protective equipment are considered the most vital tools in controlling the primary transmission of the virus. Converging evidence indicated the presence of SARS-CoV-2 in wastewater and its persistence over several days, which may create secondary transmission of the virus via waterborne and wastewater pathways. Although, researchers have started focusing on this mode of virus transmission, limited knowledge and societal unawareness of the transmission through wastewater may lead to significant increases in the number of positive cases. To emphasize the severe issue of virus transmission through wastewater and create societal awareness, we present a state of the art critical review on transmission of SARS-CoV-2 in wastewater and the potential remedial strategies to effectively control the viral spread and safeguard society. For low-income countries with high population densities, it is suggested to identify the virus in large scale municipal wastewater plants before following up with one-to-one testing for effective control of the secondary transmission. Ultrafiltration is an effective method for wastewater treatment and usually more than 4 logs of virus removal are achieved while safeguarding good protein permeability. Decentralized wastewater treatment facilities using solar-assisted disinfestation methods are most economical and can be effectively used in hospitals, isolation wards, and medical centers for reducing the risk of transmission from high local concentration sites, especially in tropical countries with abundant solar energy. Disinfection with chlorine, sodium hypochlorite, benzalkonium chloride, and peracetic acid have shown potential in terms of virucidal properties. Biological wastewater treatment using micro-algae will be highly effective in removal of virus and can be incorporated into membrane bio-reaction to achieve excellent virus removal rate. Though promising results have been shown by initial research for inactivation of SARS-CoV-2 in wastewater using physical, chemical and biological based treatment methods, there is a pressing need for extensive investigation of COVID-19 specific disinfectants with appropriate concentrations, their environmental implications, and regular monitoring of transmission. Effective wastewater treatment methods with high virus removal capacity and low treatment costs should be selected to control the virus spread and safeguard society from this deadly virus.


Asunto(s)
COVID-19 , Purificación del Agua , Humanos , Pandemias , SARS-CoV-2 , Aguas Residuales
6.
Am J Physiol Renal Physiol ; 319(1): F115-F124, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32475134

RESUMEN

Maintaining water homeostasis is fundamental for cellular function. Many diseases and drugs affect water balance and plasma osmolality. Water homeostasis studies in small animals require the use of invasive or terminal methods that make intracellular fluid volume and extracellular fluid volume (ECF) monitoring over time stressful and time consuming. We examined the feasibility of monitoring mouse ECF by a noninvasive method using time-domain nuclear magnetic resonance (TD-NMR). This technique allows differentiation of protons in a liquid environment (free fluid) from protons in soft tissues containing a majority of either small molecules (lean) or large molecules (fat). Moreover, this apparatus enables rapid, noninvasive, and repeated measurements on the same animal. We assessed the feasibility of coupling TD-NMR analysis to a longitudinal metabolic cage study by monitoring mice daily. We determined the effect of 24-h water deprivation on mouse body parameters and detected a sequential and overlapping decrease in free fluid and lean mass during water deprivation. Finally, we studied the effect of mineralocorticoids that are known to induce a transient increase in ECF but for which no direct measurements have been performed in mice. We showed, for the first time, that mineralocorticoids induced a transient ~15% increase in free fluid in conscious mice. TD-NMR is, therefore, the first method to allow direct measurement of discrete changes in ECF in conscious small animals. This method allows analysis of kinetic changes to stimuli before investigating with terminal methods and will allow further understanding of fluid disorders.


Asunto(s)
Deshidratación/metabolismo , Líquido Extracelular/metabolismo , Espectroscopía de Resonancia Magnética , Animales , Ratones , Equilibrio Hidroelectrolítico
7.
Am J Physiol Renal Physiol ; 318(6): F1463-F1477, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32338037

RESUMEN

The renal circadian clock has a major influence on the function of the kidney. Aryl hydrocarbon receptor nuclear translocator-like protein 1 [ARNTL; also known as brain and muscle ARNT-like 1 (BMAL1)] is a core clock protein and transcription factor that regulates the expression of nearly half of all genes. Using male and female kidney-specific cadherin BMAL1 knockout (KS-BMAL1 KO) mice, we examined the role of renal distal segment BMAL1 in blood pressure control and solute handling. We confirmed that this mouse model does not express BMAL1 in thick ascending limb, distal convoluted tubule, and collecting duct cells, which are the final locations for solute and fluid regulation. Male KS-BMAL1 KO mice displayed a substantially lower basal systolic blood pressure compared with littermate control mice, yet their circadian rhythm in pressure remained unchanged [male control mice: 127 ± 0.7 mmHg (n = 4) vs. male KS-BMAL KO mice: 119 ± 2.3 mmHg (n = 5), P < 0.05]. Female mice, however, did not display a genotype difference in basal systolic blood pressure [female control mice: 120 ± 1.6 mmHg (n = 5) vs. female KS-BMAL1 KO mice: 119 ± 1.5 mmHg (n = 7), P = 0.4]. In addition, male KS-BMAL1 KO mice had less Na+ retention compared with control mice in response to a K+-restricted diet (15% less following 5 days of treatment). However, there was no genotype difference in Na+ handling after a K+-restricted diet in female mice. Furthermore, there was evidence indicating a sex-specific response to K+ restriction where female mice reabsorbed less Na+ in response to this dietary challenge compared with male mice. We propose that BMAL1 in the distal nephron and collecting duct contributes to blood pressure regulation and Na+ handling in a sex-specific manner.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Presión Sanguínea , Ritmo Circadiano , Nefronas/metabolismo , Reabsorción Renal , Sodio/metabolismo , Factores de Transcripción ARNTL/deficiencia , Factores de Transcripción ARNTL/genética , Animales , Femenino , Genotipo , Homeostasis , Túbulos Renales Colectores/metabolismo , Masculino , Ratones Noqueados , Fenotipo , Potasio en la Dieta/metabolismo , Factores Sexuales , Factores de Tiempo
8.
Can J Physiol Pharmacol ; 98(9): 579-586, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32437627

RESUMEN

Previously, we showed that global knockout (KO) of the circadian clock transcription factor PER1 in male, but not female, mice fed a high-salt diet plus mineralocorticoid treatment (HS/DOCP) resulted in nondipping hypertension and decreased night/day ratio of sodium (Na) excretion. Additionally, we have shown that the endothelin-1 (ET-1) gene is targeted by both PER1 and aldosterone. We hypothesized that ET-1 would exhibit a sex-specific response to HS/DOCP treatment in PER1 KO. Here we show that male, but not female, global PER1 KO mice exhibit a decreased night/day ratio of urinary ET-1. Gene expression analysis revealed significant genotype differences in ET-1 and endothelin A receptor (ETA) expression in male, but not female, mice in response to HS/DOCP. Additionally, both wild-type and global PER1 KO male mice significantly increase endothelin B receptor (ETB) expression in response to HS/DOCP, but female mice do not. Finally, siRNA-mediated knockdown of PER1 in mouse cortical collecting duct cells (mpkCCDc14) resulted in increased ET-1 mRNA expression and peptide secretion in response to aldosterone treatment. These data suggest that PER1 is a negative regulator of ET-1 expression in response to HS/DOCP, revealing a novel mechanism for the regulation of renal Na handling in response to HS/DOCP treatment.


Asunto(s)
Endotelina-1/metabolismo , Hipertensión/metabolismo , Túbulos Renales Colectores/fisiopatología , Proteínas Circadianas Period/metabolismo , Eliminación Renal/fisiología , Aldosterona/administración & dosificación , Aldosterona/efectos adversos , Animales , Relojes Circadianos/fisiología , Modelos Animales de Enfermedad , Endotelina-1/orina , Femenino , Humanos , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Túbulos Renales Colectores/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Proteínas Circadianas Period/genética , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Eliminación Renal/efectos de los fármacos , Factores Sexuales , Cloruro de Sodio Dietético/efectos adversos , Cloruro de Sodio Dietético/metabolismo
9.
Ecotoxicol Environ Saf ; 206: 111405, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33010592

RESUMEN

Soils might be a final sink for Ag2S nanoparticles (NPs). Still, there are limited data on their effects on soil bacterial communities (SBC). To bridge this gap, we investigated the effects of Ag2S NPs (10 mg kg-1 soil) on the structure and function of SBC in a terrestrial indoor mesocosm, using a multi-species design. During 28 days of exposure, the SBC function-related parameters were analysed in terms of enzymatic activity, community level physiological profile, culture of functional bacterial groups [phosphorous-solubilizing bacteria (P-SB) and heterotrophic bacteria (HB)], and SBC structure was analysed by 16S rRNA gene-targeted denaturing gradient gel electrophoresis. The SBC exposed to Ag2S NPs showed a significative decrease of functional parameters, such as ß-glucosidase activity and L-arginine consumption, and increase of the acid phosphatase activity. At the structural level, significantly lower richness and diversity were detected, but at later exposure times compared to the AgNO3 treatment, likely because of a low dissolution rate of Ag2S NPs. In fact, stronger effects were observed in soils spiked with AgNO3, in both functional and structural parameters. Changes in SBC structure seem to negatively correlate with parameters related to phosphorous (acid phosphatase activity) and carbon cycling (abundance of HB, P-SB, and ß-glucosidase activity). Our results indicate a significant effect of Ag2S NPs on SBC, specifically on parameters related to carbon and phosphorous cycling, at doses as low as 10 mg kg-1 soil. These effects were only observed after 28 days, highlighting the importance of long-term exposure experiments for slowly dissolving NPs.


Asunto(s)
Nanopartículas del Metal/toxicidad , Microbiota/efectos de los fármacos , Compuestos de Plata/toxicidad , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Suelo/química , Fosfatasa Ácida/análisis , Microbiota/genética , Oxidorreductasas/análisis , ARN Ribosómico 16S , Contaminantes del Suelo/análisis , beta-Glucosidasa/análisis
10.
Am J Physiol Renal Physiol ; 316(5): F807-F813, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30759025

RESUMEN

Circadian rhythms govern physiological functions and are important for overall health. The molecular circadian clock comprises several transcription factors that mediate circadian control of physiological function, in part, by regulating gene expression in a tissue-specific manner. These connections are well established, but the underlying mechanisms are incompletely understood. The overall goal of this study was to examine the connection among the circadian clock protein Period 1 (Per1), epithelial Na+ channel (ENaC), and blood pressure (BP) using a multipronged approach. Using global Per1 knockout mice on a 129/sv background in combination with a high-salt diet plus mineralocorticoid treatment, we demonstrated that loss of Per1 in this setting is associated with protection from hypertension. Next, we used the ENaC inhibitor benzamil to demonstrate a role for ENaC in BP regulation and urinary Na+ excretion in 129/sv mice. We targeted Per1 indirectly using pharmacological inhibition of Per1 nuclear entry in vivo to demonstrate altered expression of known Per1 target genes as well as a BP-lowering effect in 129/sv mice. Finally, we directly inhibited Per1 via genetic knockdown in amphibian distal nephron cells to demonstrate, for the first time, that reduced Per1 expression is associated with decreased ENaC activity at the single channel level.


Asunto(s)
Presión Sanguínea , Ritmo Circadiano , Canales Epiteliales de Sodio/metabolismo , Hipertensión/prevención & control , Nefronas/metabolismo , Proteínas Circadianas Period/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacología , Animales , Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Caseína Quinasas/antagonistas & inhibidores , Caseína Quinasas/metabolismo , Ritmo Circadiano/efectos de los fármacos , Desoxicorticosterona/análogos & derivados , Modelos Animales de Enfermedad , Bloqueadores del Canal de Sodio Epitelial/farmacología , Canales Epiteliales de Sodio/efectos de los fármacos , Canales Epiteliales de Sodio/genética , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Ratones de la Cepa 129 , Ratones Noqueados , Mineralocorticoides , Natriuresis , Nefronas/efectos de los fármacos , Proteínas Circadianas Period/antagonistas & inhibidores , Proteínas Circadianas Period/deficiencia , Proteínas Circadianas Period/genética , Pirimidinas/farmacología , Cloruro de Sodio Dietético , Factores de Tiempo , Xenopus
11.
Am J Physiol Regul Integr Comp Physiol ; 316(1): R50-R58, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30427705

RESUMEN

The circadian clock is integral to the maintenance of daily rhythms of many physiological outputs, including blood pressure. Our laboratory has previously demonstrated the importance of the clock protein period 1 (PER1) in blood pressure regulation in male mice. Briefly, a high-salt diet (HS; 4% NaCl) plus injection with the long-acting mineralocorticoid deoxycorticosterone pivalate (DOCP) resulted in nondipping hypertension [<10% difference between night and day blood pressure (BP) in Per1-knockout (KO) mice but not in wild-type (WT) mice]. To date, there have been no studies that have examined the effect of a core circadian gene KO on BP rhythms in female mice. The goal of the present study was to determine whether female Per1-KO mice develop nondipping hypertension in response to HS/DOCP treatment. For the first time, we demonstrate that loss of the circadian clock protein PER1 in female mice does not significantly change mean arterial pressure (MAP) or the BP rhythm relative to female C57BL/6 WT control mice. Both WT and Per1-KO female mice experienced a significant increase in MAP in response to HS/DOCP. Importantly, however, both genotypes maintained a >10% dip in BP on HS/DOCP. This effect is distinct from the nondipping hypertension seen in male Per1-KO mice, demonstrating that the female sex appears to be protective against PER1-mediated nondipping hypertension in response to HS/DOCP. Together, these data suggest that PER1 acts in a sex-dependent manner in the regulation of cardiovascular rhythms.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Hipertensión/genética , Proteínas Circadianas Period/deficiencia , Animales , Presión Sanguínea/fisiología , Ritmo Circadiano/fisiología , Femenino , Hipertensión/fisiopatología , Ratones Endogámicos C57BL , Mineralocorticoides , Proteínas Circadianas Period/genética , Cloruro de Sodio Dietético/metabolismo
12.
Am J Physiol Renal Physiol ; 314(6): F1138-F1144, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357420

RESUMEN

Many physiological functions have a circadian rhythm, including blood pressure (BP). BP is highest during the active phase, whereas during the rest period, BP dips 10-20%. Patients that do not experience this dip at night are termed "nondippers." Nondipping hypertension is associated with increased risk of cardiovascular disease. The mechanisms underlying nondipping hypertension are not understood. Without the circadian clock gene Per1, C57BL/6J mice develop nondipping hypertension on a high-salt diet plus mineralocorticoid treatment (HS/DOCP). Our laboratory has shown that PER1 regulates expression of several genes related to sodium (Na) transport in the kidney, including epithelial Na channel (ENaC) and Na chloride cotransporter (NCC). Urinary Na excretion also demonstrates a circadian pattern with a peak during active periods. We hypothesized that PER1 contributes to circadian regulation of BP via a renal Na-handling-dependent mechanism. Na-handling genes from the distal nephron were inappropriately regulated in KO mice on HS/DOCP. Additionally, the night/day ratio of Na urinary excretion by Per1 KO mice is decreased compared with WT (4 × vs. 7×, P < 0.001, n = 6 per group). Distal nephron-specific Per1 KO mice also show an inappropriate increase in expression of Na transporter genes αENaC and NCC. These results support the hypothesis that PER1 mediates control of circadian BP rhythms via the regulation of distal nephron Na transport genes. These findings have implications for the understanding of the etiology of nondipping hypertension and the subsequent development of novel therapies for this dangerous pathophysiological condition.


Asunto(s)
Presión Sanguínea , Ritmo Circadiano , Hipertensión/metabolismo , Túbulos Renales Distales/metabolismo , Natriuresis , Proteínas Circadianas Period/metabolismo , Eliminación Renal , Animales , Presión Sanguínea/genética , Ritmo Circadiano/genética , Acetato de Desoxicorticosterona , Modelos Animales de Enfermedad , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Predisposición Genética a la Enfermedad , Hipertensión/genética , Hipertensión/fisiopatología , Túbulos Renales Distales/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Natriuresis/genética , Proteínas Circadianas Period/deficiencia , Proteínas Circadianas Period/genética , Fenotipo , Eliminación Renal/genética , Cloruro de Sodio Dietético , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Factores de Tiempo , Regulación hacia Arriba
13.
Am J Physiol Renal Physiol ; 312(6): F1073-F1080, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28179253

RESUMEN

Modulation of the epithelial Na+ channel (ENaC) activity in the collecting duct (CD) is an important mechanism for normal Na+ homeostasis. ENaC activity is inversely related to dietary Na+ intake, in part due to inhibitory paracrine purinergic regulation. Evidence suggests that H+,K+-ATPase activity in the CD also influences Na+ excretion. We hypothesized that renal H+,K+-ATPases affect Na+ reabsorption by the CD by modulating ENaC activity. ENaC activity in HKα1 H+,K+-ATPase knockout (HKα1-/-) mice was uncoupled from Na+ intake. ENaC activity on a high-Na+ diet was greater in the HKα1-/- mice than in WT mice. Moreover, dietary Na+ content did not modulate ENaC activity in the HKα1-/- mice as it did in WT mice. Purinergic regulation of ENaC was abnormal in HKα1-/- mice. In contrast to WT mice, where urinary [ATP] was proportional to dietary Na+ intake, urinary [ATP] did not increase in response to a high-Na+ diet in the HKα1-/- mice and was significantly lower than in the WT mice. HKα1-/- mice fed a high-Na+ diet had greater Na+ retention than WT mice and had an impaired dipsogenic response. These results suggest an important role for the HKα1 subunit in the regulation of purinergic signaling in the CD. They are also consistent with HKα1-containing H+,K+-ATPases as important components for the proper regulation of Na+ balance and the dipsogenic response to a high-salt diet. Such observations suggest a previously unrecognized element in Na+ regulation in the CD.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/deficiencia , Túbulos Renales Colectores/enzimología , Eliminación Renal , Reabsorción Renal , Sodio en la Dieta/metabolismo , Adenosina Trifosfato/orina , Aldosterona/sangre , Animales , Genotipo , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , Homeostasis , Hipernatremia/sangre , Hipernatremia/enzimología , Hipernatremia/genética , Hipernatremia/orina , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Transducción de Señal , Factores de Tiempo , Vasopresinas/sangre
14.
Br J Anaesth ; 118(1): 32-43, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28039240

RESUMEN

Human error poses significant risk for hospitalized patients causing an estimated 100,000 to 400,000 deaths in the USA annually. Medication errors contribute, with error occurring in 5.3% of medication administrations during surgery. In this study 70.3% of medication errors were deemed preventable. Given the paucity of randomized controlled studies, we undertook a rigorous review of the literature to identify recommendations supported by expert opinions. An extensive literature search pertaining to medication error, medication safety, operating room, and anaesthesia was performed. The National Guidelines Clearinghouse was searched for any anaesthesia or operating room medication safety guidelines.A total of 74 articles were included. Recommendations were tabulated and assigned points based on a scale revised from a prior study. A total of 138 unique recommendations were identified, with point tallies ranging from 4 to 190. An in-person focus meeting occurred, where the 138 recommendations were reviewed, combined and condensed. A modified Delphi process was used to eliminate items found to be unimportant or those unable to be quantified (e.g. "minimize fatigue"). A total of 35 specific recommendations remained. Adverse events as a result of medication errors occur frequently in the operative setting. There are few rigorous studies to direct medication safety strategies, but this should not lead us to do nothing. The overwhelming consensus regarding best practices should be accepted, and the recommendations implemented. Our list of recommended strategies can hopefully be used to assess local vulnerabilities and institute system solutions.


Asunto(s)
Errores de Medicación/prevención & control , Quirófanos , Seguridad del Paciente , Humanos
15.
Am J Physiol Renal Physiol ; 309(12): F1026-34, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26400543

RESUMEN

Aldosterone increases blood pressure (BP) by stimulating sodium (Na) reabsorption within the distal nephron and collecting duct (CD). Aldosterone also stimulates endothelin-1 (ET-1) production that acts within the CD to inhibit Na reabsorption via a negative feedback mechanism. We tested the hypothesis that this renal aldosterone-endothelin feedback system regulates electrolyte balance and BP by comparing the effect of a high-salt (NaCl) diet and mineralocorticoid stimulation in control and CD-specific ET-1 knockout (CD ET-1 KO) mice. Metabolic balance and radiotelemetric BP were measured before and after treatment with desoxycorticosterone pivalate (DOCP) in mice fed a high-salt diet with saline to drink. CD ET-1 KO mice consumed more high-salt diet and saline and had greater urine output than controls. CD ET-1 KO mice exhibited increased BP and greater fluid retention and body weight than controls on a high-salt diet. DOCP with high-salt feeding further increased BP in CD ET-1 KO mice, and by the end of the study the CD ET-1 KO mice were substantially hypernatremic. Unlike controls, CD ET-1 KO mice failed to respond acutely or escape from DOCP treatment. We conclude that local ET-1 production in the CD is required for the appropriate renal response to Na loading and that lack of local ET-1 results in abnormal fluid and electrolyte handling when challenged with a high-salt diet and with DOCP treatment. Additionally, local ET-1 production is necessary, under these experimental conditions, for renal compensation to and escape from the chronic effects of mineralocorticoids.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Endotelina-1/metabolismo , Mineralocorticoides/farmacología , Sodio/metabolismo , Animales , Endotelina-1/genética , Hipertensión/metabolismo , Túbulos Renales Colectores/efectos de los fármacos , Túbulos Renales Colectores/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Endotelina B/metabolismo , Cloruro de Sodio Dietético/metabolismo
16.
Environ Pollut ; 348: 123790, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537798

RESUMEN

Plastic pollution is a global concern that has grown ever more acute in recent years. Most research has focused on the impact of plastic pollution in marine environments. However, plastic is increasingly being detected in terrestrial and freshwater environments with key inland sources including landfills, where it is accessible to a wide range of organisms. Birds are effective bioindicators of pollutants for many reasons, including their high mobility and high intra- and interspecific variation in trophic levels. Freshwater and terrestrial bird species are under-represented in plastic pollution research compared to marine species. We reviewed 106 studies (spanning from 1994 onwards) that have detected plastics in bird species dwelling in freshwater and/or terrestrial habitats, identifying knowledge gaps. Seventy-two studies focused solely on macroplastics (fragments >5 mm), compared to 22 microplastic (fragments <5 mm) studies. A further 12 studies identified plastics as both microplastics and macroplastics. No study investigated nanoplastic (particles <100 nm) exposure. Research to date has geographical and species' biases while ignoring nanoplastic sequestration in free-living freshwater, terrestrial and marine bird species. Building on the baseline search presented here, we urge researchers to develop and validate standardised field sampling techniques and laboratory analytical protocols such as Raman spectroscopy to allow for the quantification and identification of micro- and nanoplastics in terrestrial and freshwater environments and the species therein. Future studies should consistently report the internalised and background concentrations, types, sizes and forms of plastics. This will enable a better understanding of the sources of plastic pollution and their routes of exposure to birds of terrestrial and freshwater environments, providing a more comprehensive insight into the potential impacts on birds.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Plásticos , Biomarcadores Ambientales , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Agua Dulce , Aves , Ecosistema
17.
Am J Physiol Renal Physiol ; 305(4): F568-73, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23698114

RESUMEN

The collecting duct (CD) is a major renal site for the hormonal regulation of Na homeostasis and is critical for systemic arterial blood pressure control. Our previous studies demonstrated that the endothelin-1 gene (edn1) is an early response gene to the action of aldosterone. Because aldosterone and endothelin-1 (ET-1) have opposing actions on Na reabsorption (JNa) in the kidney, we postulated that stimulation of ET-1 by aldosterone acts as a negative feedback mechanism, acting locally within the CD. Aldosterone is known to increase JNa in the CD, in part, by stimulating the epithelial Na channel (ENaC). In contrast, ET-1 increases Na and water excretion through its binding to receptors in the CD. To date, direct measurement of the quantitative effect of ET-1 on transepithelial JNa in the isolated in vitro microperfused mouse CD has not been determined. We observed that the CD exhibits substantial JNa in male and female mice that is regulated, in part, by a benzamil-sensitive pathway, presumably ENaC. ENaC-mediated JNa is greater in the cortical CD (CCD) than in the outer medullary CD (OMCD); however, benzamil-insensitive JNa is present in the CCD and not in the OMCD. In the presence of ET-1, ENaC-mediated JNa is significantly inhibited. Blockade of either ETA or ETB receptor restored JNa to control rates; however, only ETA receptor blockade restored a benzamil-sensitive component of JNa. We conclude 1) Na reabsorption is mediated by ENaC in the CCD and OMCD and also by an ENaC-independent mechanism in the CCD; and 2) ET-1 inhibits JNa in the CCD through both ETA and ETB receptor-mediated pathways.


Asunto(s)
Endotelina-1/fisiología , Canales Epiteliales de Sodio/metabolismo , Túbulos Renales Colectores/metabolismo , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Sodio/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacología , Animales , Endotelina-1/farmacología , Femenino , Humanos , Túbulos Renales Colectores/efectos de los fármacos , Masculino , Ratones
18.
Am J Physiol Renal Physiol ; 305(12): F1697-704, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24154698

RESUMEN

The circadian clock plays an important role in the regulation of physiological processes, including renal function and blood pressure. We have previously shown that the circadian protein period (Per)1 regulates the expression of multiple Na(+) transport genes in the collecting duct, including the α-subunit of the renal epithelial Na(+) channel. Consistent with this finding, Per1 knockout mice exhibit dramatically lower blood pressure than wild-type mice. We have also recently demonstrated the potential opposing actions of cryptochrome (Cry)2 on Per1 target genes. Recent work by others has demonstrated that Cry1/2 regulates aldosterone production through increased expression of the adrenal gland-specific rate-limiting enzyme 3ß-dehydrogenase isomerase (3ß-HSD). Therefore, we tested the hypothesis that Per1 plays a role in the regulation of aldosterone levels and renal Na(+) retention. Using RNA silencing and pharmacological blockade of Per1 nuclear entry in the NCI-H295R human adrenal cell line, we showed that Per1 regulates 3ß-HSD expression in vitro. These results were confirmed in vivo: mice with reduced levels of Per1 had decreased levels of plasma aldosterone and decreased mRNA expression of 3ß-HSD. We postulated that mice with reduced Per1 would have a renal Na(+)-retaining defect. Indeed, metabolic cage experiments demonstrated that Per1 heterozygotes excreted more urinary Na(+) compared with wild-type mice. Taken together, these data support the hypothesis that Per1 regulates aldosterone levels and that Per1 plays an integral role in the regulation of Na(+) retention.


Asunto(s)
Aldosterona/metabolismo , Riñón/metabolismo , Proteínas Circadianas Period/metabolismo , Sodio/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Glándulas Suprarrenales/citología , Glándulas Suprarrenales/metabolismo , Animales , Línea Celular , Células Cultivadas , Criptocromos/metabolismo , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Proteínas Circadianas Period/deficiencia , Proteínas Circadianas Period/efectos de los fármacos , Proteínas Circadianas Period/genética , ARN Interferente Pequeño/farmacología
19.
Function (Oxf) ; 4(2): zqad001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778748

RESUMEN

Brain and muscle ARNT-like 1 (BMAL1) is a core circadian clock protein and transcription factor that regulates many physiological functions, including blood pressure (BP). Male global Bmal1 knockout (KO) mice exhibit ∼10 mmHg reduction in BP, as well as a blunting of BP rhythm. The mechanisms of how BMAL1 regulates BP remains unclear. The adrenal gland synthesizes hormones, including glucocorticoids and mineralocorticoids, that influence BP rhythm. To determine the role of adrenal BMAL1 on BP regulation, adrenal-specific Bmal1 (ASCre/+ ::Bmal1) KO mice were generated using aldosterone synthase Cre recombinase to KO Bmal1 in the adrenal gland zona glomerulosa. We confirmed the localization and efficacy of the KO of BMAL1 to the zona glomerulosa. Male ASCre/+ ::Bmal1 KO mice displayed a shortened BP and activity period/circadian cycle (typically 24 h) by ∼1 h and delayed peak of BP and activity by ∼2 and 3 h, respectively, compared with littermate Cre- control mice. This difference was only evident when KO mice were in metabolic cages, which acted as a stressor, as serum corticosterone was increased in metabolic cages compared with home cages. AS Cre/+ ::Bmal1 KO mice also displayed altered diurnal variation in serum corticosterone. Furthermore, these mice have altered eating behaviors where they have a blunted night/day ratio of food intake, but no change in overall food consumed compared with controls. Overall, these data suggest that adrenal BMAL1 has a role in the regulation of BP rhythm and eating behaviors.


Asunto(s)
Factores de Transcripción ARNTL , Presión Sanguínea , Relojes Circadianos , Conducta Alimentaria , Animales , Masculino , Ratones , Factores de Transcripción ARNTL/genética , Encéfalo/metabolismo , Relojes Circadianos/genética , Corticosterona , Ratones Noqueados
20.
Nat Nanotechnol ; 18(8): 957-966, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157020

RESUMEN

The varied transcriptomic response to nanoparticles has hampered the understanding of the mechanism of action. Here, by performing a meta-analysis of a large collection of transcriptomics data from various engineered nanoparticle exposure studies, we identify common patterns of gene regulation that impact the transcriptomic response. Analysis identifies deregulation of immune functions as a prominent response across different exposure studies. Looking at the promoter regions of these genes, a set of binding sites for zinc finger transcription factors C2H2, involved in cell stress responses, protein misfolding and chromatin remodelling and immunomodulation, is identified. The model can be used to explain the outcomes of mechanism of action and is observed across a range of species indicating this is a conserved part of the innate immune system.


Asunto(s)
Nanoestructuras , Dedos de Zinc , Dedos de Zinc/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Perfilación de la Expresión Génica , Proteínas de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA