Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 250, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448802

RESUMEN

BACKGROUND: Immunotherapy is a practical therapeutic approach in breast cancer (BRCA), and the role of FLI1 in immune regulation has gradually been unveiled. However, the specific role of FLI1 in BRCA was conflicted; thus, additional convincing evidence is needed. METHODS: We explored the upstream regulation of FLI1 expression via summary data-based Mendelian randomization (SMR) analysis and ncRNA network construction centering on FLI1 using BRCA genome-wide association study (GWAS) summary data with expression quantitative trait loci (eQTLs) and DNA methylation quantitative trait loci (mQTLs) from the blood and a series of in silico analyses, respectively. We illuminated the downstream function of FLI1 in immune regulation by integrating a series of analyses of single-cell RNA sequence data (scRNA-seq). RESULTS: We verified a causal pathway from FLI1 methylation to FLI1 gene expression to BRCA onset and demonstrated that FLI1 was downregulated in BRCA. FLI1, a transcription factor, served as myeloid and T cells' communication regulator by targeting immune-related ligands and receptor transcription in BRCA tissues. We constructed a ceRNA network centering on FLI1 that consisted of three LncRNAs (CKMT2-AS1, PSMA3-AS1, and DIO3OS) and a miRNA (hsa-miR-324-5p), and the expression of FLI1 was positively related to a series of immune-related markers, including immune cell infiltration, biomarkers of immune cells, and immune checkpoints. CONCLUSION: Low-methylation-induced or ncRNA-mediated downregulation of FLI1 is associated with poor prognosis, and FLI1 might regulate the tumor immune microenvironment via a cell-type-specific target genes manner in BRCA.


Asunto(s)
MicroARNs , Neoplasias , Humanos , Forma Mitocondrial de la Creatina-Quinasa , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , MicroARNs/genética , Sitios de Carácter Cuantitativo , Factores de Transcripción , Microambiente Tumoral/genética
2.
Environ Res ; 248: 118271, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38262515

RESUMEN

Antibiotics and antibiotic resistance genes (ARGs), known as emerging contaminants, have raised widespread concern due to their potential environmental and human health risks. In this study, a conventional bioretention cell (C-BRC) and three modified bioretention cells with biochar (BC-BRC), microbial fuel cell coupled/biochar (EBC-BRC) and zero-valent iron/biochar (Fe/BC-BRC) were established and two antibiotics, namely sulfamethoxazole (SMX) and tetracycline (TC), were introduced into the systems in order to thoroughly investigate the co-stress associated with the long-term removal of pollutants, dynamics of microbial community, ARGs and functional genes in wastewater treatment. The results demonstrated that the SMX and TC co-stress significantly inhibited the removal of total nitrogen (TN) (C-BRC: 37.46%; BC-BRC: 41.64%; EBC-BRC: 55.60%) and total phosphorous (TP) (C-BRC: 53.11%; BC-BRC: 55.36%; EBC-BRC: 62.87%) in C-BRC, BC-BRC and EBC-BRC, respectively, while Fe/BC-BRC exhibited profoundly stable and high removal efficiencies (TN: 89.33%; TP: 98.36%). Remarkably, greater than 99% removals of SMX and TC were achieved in three modified BRCs compared with C-BRC (SMX: 30.86 %; TC: 59.29%). The decreasing absolute abundances of denitrifying bacteria and the low denitrification functional genes (nirK: 2.80 × 105-5.97 × 105 copies/g; nirS: 7.22 × 105-1.69 × 106 copies/g) were responsible for the lower TN removals in C-BRC, BC-BRC and EBC-BRC. The amendment of Fe/BC successfully detoxified SMX and TC to functional bacteria. Furthermore, the co-stress of antibiotics stimulated the propagation of ARGs (sulI, sulII, tetA and tetC) in substrates of all BRCs and only Fe/BC-BRC effectively reduced all the ARGs in effluent by an order of magnitude. The findings contribute to developing robust ecological wastewater treatment technologies to simultaneously remove nutrients and multiple antibiotics.


Asunto(s)
Antibacterianos , Carbón Orgánico , Microbiota , Humanos , Antibacterianos/farmacología , Sulfametoxazol , Hierro , Genes Bacterianos , Tetraciclina/farmacología , Farmacorresistencia Microbiana/genética , Bacterias
3.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673832

RESUMEN

Phytophthora root rot is a devastating disease of soybean caused by Phytophthora sojae. However, the resistance mechanism is not yet clear. Our previous studies have shown that GmAP2 enhances sensitivity to P. sojae in soybean, and GmMYB78 is downregulated in the transcriptome analysis of GmAP2-overexpressing transgenic hairy roots. Here, GmMYB78 was significantly induced by P. sojae in susceptible soybean, and the overexpressing of GmMYB78 enhanced sensitivity to the pathogen, while silencing GmMYB78 enhances resistance to P. sojae, indicating that GmMYB78 is a negative regulator of P. sojae. Moreover, the jasmonic acid (JA) content and JA synthesis gene GmAOS1 was highly upregulated in GmMYB78-silencing roots and highly downregulated in overexpressing ones, suggesting that GmMYB78 could respond to P. sojae through the JA signaling pathway. Furthermore, the expression of several pathogenesis-related genes was significantly lower in GmMYB78-overexpressing roots and higher in GmMYB78-silencing ones. Additionally, we screened and identified the upstream regulator GmbHLH122 and downstream target gene GmbZIP25 of GmMYB78. GmbHLH122 was highly induced by P. sojae and could inhibit GmMYB78 expression in resistant soybean, and GmMYB78 was highly expressed to activate downstream target gene GmbZIP25 transcription in susceptible soybean. In conclusion, our data reveal that GmMYB78 triggers soybean sensitivity to P. sojae by inhibiting the JA signaling pathway and the expression of pathogenesis-related genes or through the effects of the GmbHLH122-GmMYB78-GmbZIP25 cascade pathway.


Asunto(s)
Ciclopentanos , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Glycine max , Oxilipinas , Phytophthora , Enfermedades de las Plantas , Proteínas de Plantas , Factores de Transcripción , Glycine max/genética , Glycine max/microbiología , Glycine max/parasitología , Glycine max/metabolismo , Phytophthora/patogenicidad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas Modificadas Genéticamente , Raíces de Plantas/microbiología , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167230, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38734322

RESUMEN

The exploration of the complex mechanisms of cancer immunotherapy is rapidly evolving worldwide, and our focus is on the interaction of hepatocellular carcinoma (HCC) with immune checkpoint inhibitors (ICIs), particularly as it relates to the regulatory role of the gut microbiome. An important basis for the induction of immune responses in HCC is the presence of specific anti-tumor cells that can be activated and reinforced by ICIs, which is why the application of ICIs results in sustained tumor response rates in the majority of HCC patients. However, mechanisms of acquired resistance to immunotherapy in unresectable HCC result in no long-term benefit for some patients. The significant heterogeneity of inter-individual differences in the gut microbiome in response to treatment with ICIs makes it possible to target modulation of specific gut microbes to assist in augmenting checkpoint blockade therapies in HCC. This review focuses on the complex relationship between the gut microbiome, host immunity, and HCC, and emphasizes that manipulating the gut microbiome to improve response rates to cancer ICI therapy is a clinical strategy with unlimited potential.


Asunto(s)
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Inhibidores de Puntos de Control Inmunológico , Neoplasias Hepáticas , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/microbiología , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/microbiología , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia/métodos , Animales
5.
Aging (Albany NY) ; 16(3): 2249-2272, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38289597

RESUMEN

The role of gut microbes (GM) and their metabolites in colorectal cancer (CRC) development has attracted increasing attention. Several studies have identified specific microorganisms that are closely associated with CRC occurrence and progression, as well as key genes associated with gut microorganisms. However, the extent to which gut microbes-related genes can serve as biomarkers for CRC progression or prognosis is still poorly understood. This study used a bioinformatics-based approach to synthetically analyze the large amount of available data stored in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Through this analysis, this study identified two distinct CRC molecular subtypes associated with GM, as well as CRC markers related to GM. In addition, these new subtypes exhibit significantly different survival outcomes and are characterized by distinct immune landscapes and biological functions. Gut microbes-related biomarkers (GMRBs), IL7 and BCL10, were identified and found to have independent prognostic value and predictability for immunotherapeutic response in CRC patients. In addition, a systematic collection and review of prior research literature on GM and CRC provided additional evidence to support these findings. In conclusion, this paper provides new insights into the underlying pathological mechanisms by which GM promotes the development of CRC and suggests potentially viable solutions for individualized prevention, screening, and treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Humanos , Biomarcadores , Biología Computacional , Bases de Datos Factuales , Neoplasias Colorrectales/genética , Pronóstico
6.
Chin J Integr Med ; 30(5): 468-479, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38329654

RESUMEN

Activation of the NOD-like receptor protein 3 (NLRP3) inflammasome signaling pathway is an important mechanism underlying myocardial pyroptosis and plays an important role in inflammatory damage to myocardial tissue in patients with cardiovascular diseases (CVDs), such as diabetic cardiomyopathy, ischemia/reperfusion injury, myocardial infarction, heart failure and hypertension. Noncoding RNAs (ncRNAs) are important regulatory factors. Many Chinese medicine (CM) compounds, including their effective components, can regulate pyroptosis and exert myocardium-protecting effects. The mechanisms underlying this protection include inhibition of inflammasome protein expression, Toll-like receptor 4-NF-κB signal pathway activation, oxidative stress, endoplasmic reticulum stress (ERS), and mixed lineage kinase 3 expression and the regulation of silent information regulator 1. The NLRP3 protein is an important regulatory target for CVD prevention and treatment with CM. Exploring the effects of the interventions mediated by CM and the related mechanisms provides new ideas and perspectives for CVD prevention and treatment.


Asunto(s)
Enfermedades Cardiovasculares , Inflamasomas , Medicina Tradicional China , Piroptosis , Animales , Humanos , Enfermedades Cardiovasculares/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
7.
Sci Rep ; 14(1): 9764, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684762

RESUMEN

SPTBN2 is a protein-coding gene that is closely related to the development of malignant tumors. However, its prognostic value and biological function in pan-cancer, especially pancreatic cancer (PAAD), have not been reported. In the present study, a novel exploration of the value and potential mechanism of SPTBN2 in PAAD was conducted using multi-omics in the background of pan-cancer. Via various database analysis, up-regulated expression of SPTBN2 was detected in most of the tumor tissues examined. Overexpression of SPTBN2 in PAAD and kidney renal clear cell cancer patients potentially affected overall survival, disease-specific survival, and progression-free interval. In PAAD, SPTBN2 can be used as an independent factor affecting prognosis. Mutations and amplification of SPTBN2 were detected, with abnormal methylation of SPTBN2 affecting its expression and the survival outcome of PAAD patients. Immunoassay results demonstrate that SPTBN2 was a potential biomarker for predicting therapeutic response in PAAD, and may influence the immunotherapy efficacy of PAAD by regulating levels of CD8 + T cells and neutrophil infiltration. Results from an enrichment analysis indicated that SPTBN2 may regulate the development of PAAD via immune pathways. Thus, SPTBN2 is a potential prognostic biomarker and immunotherapy target based on its crucial role in the development of PAAD.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Metilación de ADN , Multiómica , Mutación , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Pronóstico , Espectrina/metabolismo , Espectrina/genética
8.
J Ethnopharmacol ; 324: 117770, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38219877

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: To explore the differences in the anti-inflammatory efficacy and mechanisms of the Miao medicine, both raw and after processing, using the "sweat soaking method" of Radix Wikstroemia indica (RWI). AIM OF THE STUDY: The purpose of this study was to explore the differences in the anti-inflammatory efficacy and mechanism of action before and after the processing of the Miao medicine (RWI) using the "sweat soaking method." MATERIALS AND METHODS: Network pharmacology technology was used to construct the "drug-component target-pathway-disease" network, and the main anti-inflammatory pathways of RWI were identified. Rat models of collagen-induced arthritis were established. The changes in body weight, swelling rate of the foot pad and ankle joint, arthritis index, thymus index, spleen index, pathological changes of the ankle joint, and the content of inflammatory cytokines (IL-1ß, IL-2, IL-6, IL-10, TNF-α, and NO) were used as indices to evaluate the effect of RWI on rats with collagen-induced arthritis before and after its processing. Plasma and urine samples were collected from the rats, and the potential biomarkers of, and metabolic pathways underlying the anti-inflammatory effects of RWI before and after processing were identified using 1H-Nuclear magnetic resonance metabolomics combined with a multivariate statistical analysis. RESULTS: Eleven key anti-inflammatory targets of IL6, IL-1ß, TNF, ALB, AKT1, IFNG, INS, STAT3, EGFR, TP53, and SRC were identified by network pharmacology. The PI3K-Akt signaling pathway, steroid hormone biosynthesis, arginine biosynthesis, arginine and proline metabolism, tryptophan metabolism, and other pathways were mainly involved in these effects. Pharmacodynamic studies found that both raw and processed RWI products downregulated inflammatory factors in rats with collagen-induced arthritis and alleviated the pathological changes. A total of 41 potential pathways for the anti-inflammatory effects of raw RWI products and 36 potential pathways for the anti-inflammatory effects of processed RWI products were identified by plasma and urine metabolomics. The common pathways of network pharmacology and metabolomics were steroid hormone biosynthesis, arginine biosynthesis, arginine and proline metabolism, and tryptophan metabolism. CONCLUSIONS: The anti-inflammatory effect of RWI was mainly related to the regulation of steroid hormone biosynthesis, arginine biosynthesis, arginine and proline metabolism, and tryptophan metabolism. Finally, the "sweat soaking method" enhanced the anti-inflammatory effect of RWI.


Asunto(s)
Artritis Experimental , Medicamentos Herbarios Chinos , Wikstroemia , Ratas , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Sudor/química , Fosfatidilinositol 3-Quinasas , Triptófano , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/análisis , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Arginina , Esteroides , Hormonas , Prolina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA