RESUMEN
Perennial woody plants hold vital ecological significance, distinguished by their unique traits. While significant progress has been made in their genomic and functional studies, a major challenge persists: the absence of a comprehensive reference platform for collection, integration and in-depth analysis of the vast amount of data. Here, we present PPGR (Resource for Perennial Plant Genomes and Regulation; https://ngdc.cncb.ac.cn/ppgr/) to address this critical gap, by collecting, integrating, analyzing and visualizing genomic, gene regulation and functional data of perennial plants. PPGR currently includes 60 species, 847 million protein-protein/TF (transcription factor)-target interactions, 9016 transcriptome samples under various environmental conditions and genetic backgrounds. Noteworthy is the focus on genes that regulate wood production, seasonal dormancy, terpene biosynthesis and leaf senescence representing a wealth of information derived from experimental data, literature mining, public databases and genomic predictions. Furthermore, PPGR incorporates a range of multi-omics search and analysis tools to facilitate browsing and application of these extensive datasets. PPGR represents a comprehensive and high-quality resource for perennial plants, substantiated by an illustrative case study that demonstrates its capacity in unraveling gene functions and shedding light on potential regulatory processes.
Asunto(s)
Bases de Datos Genéticas , Genoma de Planta , Genómica , Plantas/genética , TranscriptomaRESUMEN
Copper-induced cell death is a novel mechanism of cell death, which is defined as cuproptosis. The increasing level of copper can produce toxicity in cells and may cause the occurrence of cell death. Several previous studies have proved that cuproptosis has a tight association with various cancers. Thus, the discovery of relationships between cuproptosis-related genes (CRGs) and human cancers is of great importance. Pan-cancer analysis can efficiently help researchers find out the relationship between multiple cancers and target genes precisely and make various prognostic analyses on cancers and cancer patients. Pan-cancer web servers can provide researchers with direct results of pan-cancer prognostic analyses, which can greatly improve the efficiency of their work. However, to date, no web server provides pan-cancer analysis about CRGs. Therefore, we introduce the cuproptosis pan-cancer analysis database (CuPCA), the first database for various analysis results of CRGs through 33 cancer types. CuPCA is a user-friendly resource for cancer researchers to gain various prognostic analyses between cuproptosis and cancers. It provides single CRG pan-cancer analysis, multi-CRGs pan-cancer analysis, multi-CRlncRNA pan-cancer analysis, and mRNA-circRNA-lncRNA conjoint analysis. These analysis results can not only indicate the relationship between cancers and cuproptosis at both gene level and protein level, but also predict the conditions of different cancer patients, which include their clinical condition, survival condition, and their immunological condition. CuPCA procures the delivery of analyzed data to end users, which improves the efficiency of wide research as well as releases the value of data resources. Database URL: http://cupca.cn/.