Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cereb Cortex ; 33(12): 7356-7368, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-36916968

RESUMEN

Motor skill learning is a crucial process at all ages. However, healthy aging is often accompanied by a reduction in motor learning capabilities. This study characterized the brain dynamics of healthy older adults during motor skill acquisition and identified brain regions associated with changes in different components of performance. Forty-three subjects participated in a functional magnetic resonance imaging study during which they learned a sequential grip force modulation task. We evaluated the continuous changes in brain activation during practice as well as the continuous performance-related changes in brain activation. Practice of the motor skill was accompanied by increased activation in secondary motor and associative areas. In contrast, visual and frontal areas were less recruited as task execution progressed. Subjects showed significant improvements on the motor skill. While faster execution relied on parietal areas and was inversely associated with frontal activation, accuracy was related to activation in primary and secondary motor areas. Better performance was achieved by the contribution of parietal regions responsible for efficient visuomotor processing and cortical motor regions involved in the correct action selection. The results add to the understanding of online motor learning in healthy older adults, showing complementary roles of specific networks for implementing changes in precision and speed.


Asunto(s)
Mapeo Encefálico , Destreza Motora , Humanos , Anciano , Destreza Motora/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Aprendizaje/fisiología , Imagen por Resonancia Magnética , Desempeño Psicomotor/fisiología
2.
J Neuroeng Rehabil ; 16(1): 142, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31744553

RESUMEN

Stroke is one of the main causes of long-term disability worldwide, placing a large burden on individuals and society. Rehabilitation after stroke consists of an iterative process involving assessments and specialized training, aspects often constrained by limited resources of healthcare centers. Wearable technology has the potential to objectively assess and monitor patients inside and outside clinical environments, enabling a more detailed evaluation of the impairment and allowing the individualization of rehabilitation therapies. The present review aims to provide an overview of wearable sensors used in stroke rehabilitation research, with a particular focus on the upper extremity. We summarize results obtained by current research using a variety of wearable sensors and use them to critically discuss challenges and opportunities in the ongoing effort towards reliable and accessible tools for stroke rehabilitation. Finally, suggestions concerning data acquisition and processing to guide future studies performed by clinicians and engineers alike are provided.


Asunto(s)
Trastornos del Movimiento/diagnóstico , Trastornos del Movimiento/rehabilitación , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/complicaciones , Extremidad Superior , Dispositivos Electrónicos Vestibles , Humanos , Trastornos del Movimiento/etiología
3.
Nat Neurosci ; 26(11): 2005-2016, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857774

RESUMEN

The stimulation of deep brain structures has thus far only been possible with invasive methods. Transcranial electrical temporal interference stimulation (tTIS) is a novel, noninvasive technology that might overcome this limitation. The initial proof-of-concept was obtained through modeling, physics experiments and rodent models. Here we show successful noninvasive neuromodulation of the striatum via tTIS in humans using computational modeling, functional magnetic resonance imaging studies and behavioral evaluations. Theta-burst patterned striatal tTIS increased activity in the striatum and associated motor network. Furthermore, striatal tTIS enhanced motor performance, especially in healthy older participants as they have lower natural learning skills than younger subjects. These findings place tTIS as an exciting new method to target deep brain structures in humans noninvasively, thus enhancing our understanding of their functional role. Moreover, our results lay the groundwork for innovative, noninvasive treatment strategies for brain disorders in which deep striatal structures play key pathophysiological roles.


Asunto(s)
Destreza Motora , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Aprendizaje/fisiología , Encéfalo , Cuerpo Estriado/fisiología
4.
Sci Adv ; 8(29): eabo3505, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35857838

RESUMEN

Practicing a previously unknown motor sequence often leads to the consolidation of motor chunks, which enable its accurate execution at increasing speeds. Recent imaging studies suggest the function of these structures to be more related to the encoding, storage, and retrieval of sequences rather than their sole execution. We found that optimal motor skill acquisition prioritizes the storage of the spatial features of the sequence in memory over its rapid execution early in training, as proposed by Hikosaka in 1999. This process, seemingly diminished in older adults, was partially restored by anodal transcranial direct current stimulation over the motor cortex, as shown by a sharp improvement in accuracy and an earlier yet gradual emergence of motor chunks. These results suggest that the emergence of motor chunks is preceded by the storage of the sequence in memory but is not its direct consequence; rather, these structures depend on, and result from, motor practice.

5.
Sci Rep ; 10(1): 11217, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641706

RESUMEN

The development of novel strategies to augment motor training success is of great interest for healthy persons and neurological patients. A promising approach is the combination of training with transcranial electric stimulation. However, limited reproducibility and varying effect sizes make further protocol optimization necessary. We tested the effects of a novel cerebellar transcranial alternating current stimulation protocol (tACS) on motor skill learning. Furthermore, we studied underlying mechanisms by means of transcranial magnetic stimulation and analysis of fMRI-based resting-state connectivity. N = 15 young, healthy participants were recruited. 50 Hz tACS was applied to the left cerebellum in a double-blind, sham-controlled, cross-over design concurrently to the acquisition of a novel motor skill. Potential underlying mechanisms were assessed by studying short intracortical inhibition at rest (SICIrest) and in the premovement phase (SICImove), intracortical facilitation at rest (ICFrest), and seed-based resting-state fMRI-based functional connectivity (FC) in a hypothesis-driven motor learning network. Active stimulation did not enhance skill acquisition or retention. Minor effects on striato-parietal FC were present. Linear mixed effects modelling identified SICImove modulation and baseline task performance as the most influential determining factors for predicting training success. Accounting for the identified factors may allow to stratify participants for future training-based interventions.


Asunto(s)
Ritmo Gamma/fisiología , Aprendizaje/fisiología , Destreza Motora/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Cerebelo/diagnóstico por imagen , Cerebelo/fisiología , Conectoma , Estudios Cruzados , Método Doble Ciego , Potenciales Evocados Motores/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiología , Resultado del Tratamiento , Adulto Joven
6.
IEEE Int Conf Rehabil Robot ; 2019: 294-299, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31374645

RESUMEN

A key feature of a successful game is its ability to provide the player with an adequate level of challenge. However, the objective of difficulty adaptation in serious games is not only to maintain the player's motivation by challenging, but also to ensure the completion of training objectives.This paper describes our proposed upper-limb rehabilitation game with tangible robots and investigates the effect of game elements and gameplay on the amount of the performed motion in several planes and percentage of failure by using the data from 33 unimpaired subjects who played 53 games within two consecutive days. In order to provide a more generic adaptation strategy in the future, we discretize the game area to circular zones. We then show the effect of changing these zones during gameplay on the activation of different muscles through EMG data in a pilot study.The study shows that it is possible to increase the challenge level by adding more active agents chasing the player and increasing the speed of these agents. However, only the increase in number of agents significantly increases the users' motion on both planes. Analysis of player behaviors leads us to suggest that by adapting the behaviour of these active agents in specific zones, it is possible to change the trajectory of the user, and to provide a focus on the activation of specific muscles.


Asunto(s)
Terapia por Ejercicio , Juegos Recreacionales , Robótica , Extremidad Superior/fisiopatología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto
7.
Front Neural Circuits ; 12: 79, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30327592

RESUMEN

In hemiparetic stroke, functional recovery of paretic limb may occur with the reorganization of neural networks in the brain. Neuroimaging techniques, such as magnetic resonance imaging (MRI), have a high spatial resolution which can be used to reveal anatomical changes in the brain following a stroke. However, low temporal resolution of MRI provides less insight of dynamic changes of brain activity. In contrast, electro-neurophysiological techniques, such as electroencephalography (EEG), have an excellent temporal resolution to measure such transient events, however are hindered by its low spatial resolution. This proof-of-principle study assessed a novel multimodal brain imaging technique namely Variational Bayesian Multimodal Encephalography (VBMEG), which aims to improve the spatial resolution of EEG for tracking the information flow inside the brain and its changes following a stroke. The limitations of EEG are complemented by constraints derived from anatomical MRI and diffusion weighted imaging (DWI). EEG data were acquired from individuals suffering from a stroke as well as able-bodied participants while electrical stimuli were delivered sequentially at their index finger in the left and right hand, respectively. The locations of active sources related to this stimulus were precisely identified, resulting in high Variance Accounted For (VAF above 80%). An accurate estimation of dynamic information flow between sources was achieved in this study, showing a high VAF (above 90%) in the cross-validation test. The estimated dynamic information flow was compared between chronic hemiparetic stroke and able-bodied individuals. The results demonstrate the feasibility of VBMEG method in revealing the changes of information flow in the brain after stroke. This study verified the VBMEG method as an advanced computational approach to track the dynamic information flow in the brain following a stroke. This may lead to the development of a quantitative tool for monitoring functional changes of the cortical neural networks after a unilateral brain injury and therefore facilitate the research into, and the practice of stroke rehabilitation.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Electroencefalografía/métodos , Prueba de Estudio Conceptual , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/fisiopatología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Corteza Somatosensorial/diagnóstico por imagen , Corteza Somatosensorial/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA