Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Curr Issues Mol Biol ; 44(6): 2569-2582, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35735616

RESUMEN

Recent studies have indicated that microRNA and VEGF are considered to be genetic modifiers and are associated with elevated levels of fetal haemoglobin HbF, and thus they reduce the clinical impact of sickle haemoglobin (HbS) patients. This cross-sectional study was performed on clinical confirmed subjects of SCD cases. miR-423-rs6505162 C>T and VEGF-2578 C>A genotyping was conducted by ARMS-PCR in SCD and healthy controls. A strong clinical significance was reported while comparing the association of miR-423 C>T genotypes between SCD patients and controls (p = 0.031). The microRNA-423 AA genotype was associated with an increased severity of SCD in codominant model with odd ratio (OR = 2.36, 95% CI, (1.15-4.84), p = 0.018) and similarly a significant association was observed in recessive inheritance model for microRNA-423 AA vs (CC+CA) genotypes (OR = 2.19, 95% CI, (1.32-3.62), p < 0.002). The A allele was associated with SCD severity (OR = 1.57, 95% CI, (1.13-2.19), p < 0.007). The distribution of VEGF-2578 C>A genotypes between SCD patients and healthy controls was significant (p < 0.013). Our results indicated that in the codominant model, the VEGF-2578-CA genotype was strongly associated with increased SCD severity with OR = 2.56, 95% CI, (1.36-4.82), p < 0.003. The higher expression of HbA1 (65.9%), HbA2 (4.40%), was reported in SCD patients carrying miR-423-AA genotype than miR-423 CA genotype in SCD patients carrying miR-423 CA genotype HbA1 (59.98%), HbA2 (3.74%) whereas SCD patients carrying miR-423 CA genotype has higher expression of HbF (0.98%) and HbS (38.1%) than in the patients carrying AA genotype HbF (0.60%), HbS (36.1%). ARMS-PCR has been proven to be rapid, inexpensive and is highly applicable to gene mutation screening in laboratories and clinical practices. This research highlights the significance of elucidating genetic determinants that play roles in the amelioration of the HbF levels that is used as an indicator of severity of clinical complications of the monogenic disease. Further well-designed studies with larger sample sizes are necessary to confirm our findings.

2.
Molecules ; 26(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34299400

RESUMEN

The goal of this study was to assess the pharmacological effects of black tea (Camellia sinensis var. assamica) water extract on human kinin-forming enzymes in vitro. Tea is a highly consumed beverage in the world. Factor XII (FXII, Hageman factor)-independent- and -dependent activation of prekallikrein to kallikrein leads to the liberation of bradykinin (BK) from high-molecular-weight kininogen (HK). The excessive BK production causes vascular endothelial and nonvascular smooth muscle cell permeability, leading to angioedema. The prevalence of angiotensin-converting enzyme inhibitor (ACEI)-induced angioedema appears to be through BK. Both histamine and BK are potent inflammatory mediators. However, the treatments for histamine-mediated angioedema are unsuitable for BK-mediated angioedema. We hypothesized that long-term consumption of tea would reduce bradykinin-dependent processes within the systemic and pulmonary vasculature, independent of the anti-inflammatory actions of polyphenols. A purified fraction of the black tea water extract inhibited both kallikrein and activated FXII. The black tea water extracts inhibited factor XII-induced cell migration and inhibited the production of kallikrein on the endothelial cell line. We compared the inhibitory effects of the black tea water extract and twenty-three well-known anti-inflammatory medicinal herbs, in inhibiting both kallikrein and FXII. Surprisingly, arjunglucoside II specifically inhibited the activated factor XII (FXIIa), but not the kallikrein and the activated factor XI. Taken together, the black tea water extract exerts its anti-inflammatory effects, in part, by inhibiting kallikrein and activated FXII, which are part of the plasma kallikrein-kinin system (KKS), and by decreasing BK production. The inhibition of kallikrein and activated FXII represents a unique polyphenol-independent anti-inflammatory mechanism of action for the black tea.


Asunto(s)
Bradiquinina/metabolismo , Camellia/química , Endotelio Vascular/efectos de los fármacos , Factor XII/antagonistas & inhibidores , Sistema Calicreína-Quinina/efectos de los fármacos , Extractos Vegetales/farmacología , Arteria Pulmonar/efectos de los fármacos , Proliferación Celular , Células Cultivadas , Endotelio Vascular/metabolismo , Humanos , Arteria Pulmonar/metabolismo
3.
Saudi Pharm J ; 28(3): 300-307, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32194331

RESUMEN

Vascular endothelial dysfunction is caused by dyslipidemia, hypertension, and deficiency of antioxidant systems. In this study, the protective effect of a flavonol, morin was investigated in high-fat diet (HFD)-induced dyslipidemia and vascular endothelium dysfunction. The dose-dependent attenuating effect of morin was tested at doses of 50 and 100 mg/kg/day in an in-vivo model of HFD-induced dyslipidemia using rats whereas vascular endothelial reactivity was assessed in isolated rat aorta using ex-vivo organ bath setup. Morin administration in HFD-induced dyslipidemic rats for three weeks, resulted in a significant decrease in the body weight, LW/BW ratio as compared to rats treated with HFD only where the increase in body weight was observed. Significant reduction in the waist, BMI and lee index was also observed after morin treatment in HFD-induced dyslipidemic rats. In the lipid profile studies, HFD group showed a significant increase in the total cholesterol, triglyceride, LDL, and VLDL levels while HDL levels were decreased significantly, whereas morin treatment reversed all these parameters which were comparable to standard diet (SD) group. In the ex-vivo isolated aorta studies, HFD-induced endothelium dysfunction was observed, whereas it was reversed in the aorta of animals treated with morin at doses of 50 and 100 mg/kg/day, comparable to SD group. Morin treatment produced dose-dependent improvement in lipid profile and vascular endothelium protection, thus rationalizing its medicinal use in dyslipidemia and cardiovascular-related endothelial disorders.

4.
Environ Toxicol ; 33(4): 422-435, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29345053

RESUMEN

Colon cancer is a world-wide health problem and one of the most dangerous type of cancer, affecting both men and women. Naringenin (4, 5, 7-trihydroxyflavanone) is one of the major flavone glycoside present in citrus fruits. Naringenin has long been used in Chinese's traditional medicine because of its exceptional pharmacological properties and non-toxic nature. In the present study, we investigated the chemopreventive potential of Naringenin against 1,2-dimethyhydrazine (DMH)-induced precancerous lesions, that is, aberrant crypt foci (ACF) and mucin depleted foci (MDF), and its role in regulating the oxidative stress, inflammation and hyperproliferation, in the colon of Wistar rats. Animals were divided into five groups. In groups 3-5, Naringenin was administered at the dose of 50 mg/kg b. wt. orally while in groups 2-4, DMH was administered subcutaneously in the groin at the dose of 20 mg/kg b. wt. once a week for first 5 weeks and animals were euthanized after 10 weeks. Administration of Naringenin ameliorated the development of DMH-induced lipid peroxidation, ROS formation, precancerous lesions (ACF and MDF) and it also reduced the infiltration of mast cells, suppressed the immunostaining of NF-κB-p65, COX-2, i-NOS PCNA and Ki 67 Naringenin treatment significantly attenuated the level of TNF-α and it also prevented the depletion of the mucous layer. Our findings suggest that Naringenin has strong chemopreventive potential against DMH-induced colon carcinogenesis but further studies are warranted to elucidate the precise mechanism of action of Naringenin.


Asunto(s)
Anticarcinógenos/uso terapéutico , Neoplasias del Colon/prevención & control , Flavanonas/uso terapéutico , Lesiones Precancerosas/prevención & control , Focos de Criptas Aberrantes/patología , Focos de Criptas Aberrantes/prevención & control , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/patología , Inflamación/metabolismo , Inflamación/prevención & control , Peroxidación de Lípido , Masculino , Mucinas/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo
5.
Med Oncol ; 41(9): 223, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120789

RESUMEN

Cervical Cancer remains a women's health concern worldwide and ranks among the most prevalent cancers, particularly in developing countries. Many women are diagnosed with cervical cancer, with a substantial number succumbing to the disease even after the availability of vaccines and drugs. The tumour microenvironment often exhibits immune evasion, including suppression of T-cell activity and altered cytokine, impacting the efficacy of therapeutic interventions and highlighting the need for treatments to modulate the immune response. Despite efforts to promote HPV vaccination and regular screenings, it causes many deaths, underscoring the urgent need for continued research, healthcare access, and rapid drug development or repurposing. In this study, we identified various proteins involved in cervical cancer cell cycle regulation and DNA replication proteins, performed the multitargeted docking with an FDA-approved library, and identified Oxidopamine HBr as a multitargeted drug. Studies extended with pharmacokinetics and compared with the standard values followed by DFT, which supported the compound as a multitargeted inhibitor. Further, the docked complexes were taken for the interaction fingerprints, and it was identified that there are many 9 polar, 5 hydrophobic, 2 aromatic, and 2 basic residues. We extended our studies for 100ns MD Simulation in water, and the computations explored the deviation and fluctuations under 2Å and many intermolecular interactions; the same trajectory files were used for the MM\GBSA studies. All the studies have supported the Oxidopamine HBr as a cervical cancer multitargeted inhibitor-however, experimental studies are needed before human use.


Asunto(s)
Simulación del Acoplamiento Molecular , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Femenino , Antineoplásicos/farmacología , United States Food and Drug Administration , Simulación de Dinámica Molecular , Estados Unidos , Aprobación de Drogas
6.
Arch Physiol Biochem ; 126(4): 300-307, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30406686

RESUMEN

This study is undertaken to investigate the effects of naringenin on doxorubicin- (Dox) induced nephrotoxicity in Wistar rats. Dox 10 mg/kg body weight was administered intraperitoneally once and naringenin 50 and 100 mg/kg body weight was administered orally daily for 21 d. Dox-induced oxidative stress lead to steep elevation in blood urea nitrogen (BUN), creatinine, lactate dehydrogenase (LDH), and kidney injury molecule-1 (KIM-1), compared to control, treatment with naringenin preserved kidney functions. With Dox treatment significant decrease in antioxidant enzymes with increase in malondialdehyde (MDA) compared to control was observed. Naringenin treatment reversed these values compared to Dox in kidney tissue. Dox treatment showed increased tissue nitric oxide levels naringenin treatment decreased nitric oxide (NO) in kidney tissue. Furthermore, Dox-induced inflammatory burst as indicated by up-regulation of nuclear factor-κB (NF-κB), tumour necrosis factor-α (TNF-α) tissue levels and prostaglandin-E2 (PGE-2). All such events were normalised back to normal by naringenin treatment.


Asunto(s)
Doxorrubicina/efectos adversos , Flavanonas/farmacología , Riñón/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Citoprotección/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Inflamación/metabolismo , Riñón/citología , Riñón/metabolismo , Masculino , Malondialdehído/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/biosíntesis , Ratas , Ratas Wistar
7.
Curr Neuropharmacol ; 17(3): 247-267, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30207234

RESUMEN

Nature has bestowed mankind with surplus resources (natural products) on land and water. Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. These natural products have been experimentally documented to possess various biological properties such as antioxidant, anti-inflammatory and anti-apoptotic activities. In vitro and in vivo studies have further established the usefulness of natural products in various preclinical models of neurodegenerative disorders. Natural products include phytoconstituents, like polyphenolic antioxidants, found in herbs, fruits, nuts, vegetables and also in marine and freshwater flora. These phytoconstituents may potentially suppress neurodegeneration and improve memory as well as cognitive functions of the brain. Also, they are known to play a pivotal role in the prevention and cure of different neurodegenerative diseases, such as Alzheimer's disease, epilepsy, Parkinson's disease and other neuronal disorders. The large-scale neuro-pharmacological activities of natural products have been documented due to the result of either the inhibition of inflammatory processes, or the up-regulation of various cell survival proteins or a combination of both. Due to the scarcity of human studies on neuroprotective effects of natural products, this review focuses on the various established activities of natural products in in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications using the available knowledge in the literature.


Asunto(s)
Productos Biológicos/uso terapéutico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Animales , Productos Biológicos/química , Humanos , Fármacos Neuroprotectores/química
8.
Arch Physiol Biochem ; 125(3): 201-209, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29537332

RESUMEN

Development of diabetic nephropathy (DN) is directly linked to oxidative stress and inflammation. In this context, inflammatory and oxidative markers have gained much attention as targets for therapeutic intervention. We studied the effect of zingerone in a streptozotocin/high fat diet (STZ/HFD)-induced type 2 diabetic Wistar rat model. Zingerone also known as vanillyl acetone is a pharmacologically active compound present usually in dry ginger. STZ/HFD caused excessive increase in ROS and inflammation in experimental animals. The treatment with zingerone markedly abrogated ROS levels, inhibited the NF-кB activation and considerably reduced level of other downstream inflammatory molecules (TNF-α, IL-6, IL-1ß), furthermore, zingerone treatment improved renal functioning by significantly decreasing the levels of kidney toxicity markers KIM-1, BUN, creatinine, and LDH and suppressed TGF-ß. Collectively, these findings indicate that zingerone treatment improved renal function by anti-hyperglycaemic, anti-oxidant, and anti-inflammatory effects, suggesting the efficacy of zingerone in the treatment of DN.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/tratamiento farmacológico , Guayacol/análogos & derivados , Inflamación/prevención & control , Estrés Oxidativo/efectos de los fármacos , Estallido Respiratorio/efectos de los fármacos , Animales , Glucemia/análisis , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Dieta Alta en Grasa/efectos adversos , Regulación de la Expresión Génica , Guayacol/farmacología , Inflamación/etiología , Inflamación/metabolismo , Pruebas de Función Renal , Masculino , FN-kappa B/metabolismo , Ratas , Ratas Wistar , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA