Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nano Lett ; 24(10): 2961-2971, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477058

RESUMEN

The delivery of RNA across biological barriers can be achieved by encapsulation in lipid nanoparticles (LNPs). Cationic amphiphilic drugs (CADs) are pharmacologically diverse compounds with ionizable lipid-like features. In this work, we applied CADs as a fifth component of state-of-the-art LNPs via microfluidic mixing. Improved cytosolic delivery of both siRNA and mRNA was achieved by partly replacing the cholesterol fraction of LNPs with CADs. The LNPs could cross the mucus layer in a mucus-producing air-liquid interface model of human primary bronchial epithelial cells following nebulization. Moreover, CAD-LNPs demonstrated improved epithelial and endothelial targeting following intranasal administration in mice, without a marked pro-inflammatory signature. Importantly, quantification of the CAD-LNP molar composition, as demonstrated for nortriptyline, revealed a gradual leakage of the CAD from the formulation during LNP dialysis. Altogether, these data suggest that the addition of a CAD prior to the rapid mixing process might have an impact on the composition, structure, and performance of LNPs.


Asunto(s)
Liposomas , Nanopartículas , Ratones , Animales , Humanos , Nanopartículas/química , ARN Interferente Pequeño/genética , Colesterol/química
2.
Am J Respir Crit Care Med ; 207(5): 553-565, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36170617

RESUMEN

Rationale: Tissue-resident natural killer (trNK) cells have been identified in numerous organs, but little is known about their functional contribution to respiratory immunity, in particular during chronic lung diseases such as chronic obstructive pulmonary disease (COPD). Objectives: To investigate the phenotype and antiviral responses of trNK cells in murine cigarette smoke-induced experimental COPD and in human lung parenchyma from COPD donors. Methods: Mice were exposed to cigarette smoke for 12 weeks to induce COPD-like lung disease. Lung trNK cell phenotypes and function were analyzed by flow cytometry in both murine and human disease with and without challenge with influenza A virus. Measurements and Main Results: In the mouse lung, CD49a+CD49b+EOMES+ and CD49a+CD49b-EOMESlo NK cell populations had a distinct phenotype compared with CD49a- circulating NK cells. CD49a+ NK cells were more extensively altered earlier in disease onset than circulating NK cells, and increased proportions of CD49a+ NK cells correlated with worsening disease in both murine and human COPD. Furthermore, the presence of lung disease delayed both circulating and trNK cell functional responses to influenza infection. CD49a+ NK cells markedly increased their NKG2D, CD103, and CD69 expression in experimental COPD after influenza infection, and human CD49a+ NK cells were hyperactive to ex vivo influenza infection in COPD donors. Conclusions: Collectively, these results demonstrate that trNK cell function is altered in cigarette smoke-induced disease and suggests that smoke exposure may aberrantly prime trNK cell responsiveness to viral infection. This may contribute to excess inflammation during viral exacerbations of COPD.


Asunto(s)
Gripe Humana , Enfermedades Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Ratones , Animales , Integrina alfa1/metabolismo , Gripe Humana/metabolismo , Integrina alfa2/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Células Asesinas Naturales , Pulmón/metabolismo , Enfermedades Pulmonares/metabolismo , Antivirales
3.
Eur Respir J ; 61(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36549711

RESUMEN

BACKGROUND: Receptor-interacting protein kinase 1 (RIPK1) is a key mediator of regulated cell death (including apoptosis and necroptosis) and inflammation, both drivers of COPD pathogenesis. We aimed to define the contribution of RIPK1 kinase-dependent cell death and inflammation in the pathogenesis of COPD. METHODS: We assessed RIPK1 expression in single-cell RNA sequencing (RNA-seq) data from human and mouse lungs, and validated RIPK1 levels in lung tissue of COPD patients via immunohistochemistry. Next, we assessed the consequences of genetic and pharmacological inhibition of RIPK1 kinase activity in experimental COPD, using Ripk1 S25D/S25D kinase-deficient mice and the RIPK1 kinase inhibitor GSK'547. RESULTS: RIPK1 expression increased in alveolar type 1 (AT1), AT2, ciliated and neuroendocrine cells in human COPD. RIPK1 protein levels were significantly increased in airway epithelium of COPD patients compared with never-smokers and smokers without airflow limitation. In mice, exposure to cigarette smoke (CS) increased Ripk1 expression similarly in AT2 cells, and further in alveolar macrophages and T-cells. Genetic and/or pharmacological inhibition of RIPK1 kinase activity significantly attenuated airway inflammation upon acute and subacute CS exposure, as well as airway remodelling, emphysema, and apoptotic and necroptotic cell death upon chronic CS exposure. Similarly, pharmacological RIPK1 kinase inhibition significantly attenuated elastase-induced emphysema and lung function decline. Finally, RNA-seq on lung tissue of CS-exposed mice revealed downregulation of cell death and inflammatory pathways upon pharmacological RIPK1 kinase inhibition. CONCLUSIONS: RIPK1 kinase inhibition is protective in experimental models of COPD and may represent a novel promising therapeutic approach.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Ratones , Animales , Pulmón , Muerte Celular , Inflamación/metabolismo , Ratones Endogámicos C57BL , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
4.
Thorax ; 77(5): 514-522, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35246486

RESUMEN

Asthma is a very heterozygous disease, divided in subtypes, such as eosinophilic and neutrophilic asthma. Phenotyping and endotyping of patients, especially patients with severe asthma who are refractory to standard treatment, are crucial in asthma management and are based on a combination of clinical and biological features. Nevertheless, the quest remains to find better biomarkers that distinguish asthma subtypes in a more clear and objective manner and to find new therapeutic targets to treat people with therapy-resistant asthma. In the past, research to identify asthma subtypes mainly focused on expression profiles of protein-coding genes. However, advances in RNA-sequencing technologies and the discovery of non-coding RNAs as important post-transcriptional regulators have provided an entire new field of research opportunities in asthma. This review focusses on long non-coding RNAs (lncRNAs) in asthma; these are non-coding RNAs with a length of more than 200 nucleotides. Many lncRNAs are differentially expressed in asthma, and several have been associated with asthma severity or inflammatory phenotype. Moreover, in vivo and in vitro functional studies have identified the mechanisms of action of specific lncRNAs. Although lncRNAs remain not widely studied in asthma, the current studies show the potential of lncRNAs as biomarkers and therapeutic targets as well as the need for further research.


Asunto(s)
Asma , ARN Largo no Codificante , Asma/genética , Asma/metabolismo , Biomarcadores , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Análisis de Secuencia de ARN
5.
Eur Respir J ; 59(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34446467

RESUMEN

BACKGROUND: Changes in microRNA (miRNA) expression can contribute to the pathogenesis of many diseases, including asthma. We aimed to identify miRNAs that are differentially expressed between asthma patients and healthy controls, and explore their association with clinical and inflammatory parameters of asthma. METHODS: Differentially expressed miRNAs were determined by small RNA sequencing on bronchial biopsies of 79 asthma patients and 82 healthy controls using linear regression models. Differentially expressed miRNAs were associated with clinical and inflammatory asthma features. Potential miRNA-mRNA interactions were analysed using mRNA data available from the same bronchial biopsies, and enrichment of pathways was identified with Enrichr and g:Profiler. RESULTS: In total, 78 differentially expressed miRNAs were identified in bronchial biopsies of asthma patients compared with controls, of which 60 remained differentially expressed after controlling for smoking and inhaled corticosteroid treatment. We identified several asthma-associated miRNAs, including miR-125b-5p and miR-223-3p, based on a significant association with multiple clinical and inflammatory asthma features and their negative correlation with genes associated with the presence of asthma. The most enriched biological pathway(s) affected by miR-125b-5p and miR-223-3p were inflammatory response and cilium assembly/organisation. Of interest, we identified that lower expression of miR-26a-5p was linked to more severe eosinophilic inflammation as measured in blood, sputum as well as bronchial biopsies. CONCLUSION: Collectively, we identified miR-125b-5p, miR-223-3p and miR-26a-5p as potential regulators that could contribute to the pathogenesis of asthma.


Asunto(s)
Asma , Eosinofilia , MicroARNs , Asma/metabolismo , Biopsia , Eosinofilia/metabolismo , Perfilación de la Expresión Génica , Humanos , MicroARNs/genética , Esputo/metabolismo
6.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35887096

RESUMEN

Airway mucociliary regeneration and function are key players for airway defense and are impaired in chronic obstructive pulmonary disease (COPD). Using transcriptome analysis in COPD-derived bronchial biopsies, we observed a positive correlation between cilia-related genes and microRNA-449 (miR449). In vitro, miR449 was strongly increased during airway epithelial mucociliary differentiation. In vivo, miR449 was upregulated during recovery from chemical or infective insults. miR0449-/- mice (both alleles are deleted) showed impaired ciliated epithelial regeneration after naphthalene and Haemophilus influenzae exposure, accompanied by more intense inflammation and emphysematous manifestations of COPD. The latter occurred spontaneously in aged miR449-/- mice. We identified Aurora kinase A and its effector target HDAC6 as key mediators in miR449-regulated ciliary homeostasis and epithelial regeneration. Aurora kinase A is downregulated upon miR449 overexpression in vitro and upregulated in miR449-/- mouse lungs. Accordingly, imaging studies showed profoundly altered cilia length and morphology accompanied by reduced mucociliary clearance. Pharmacological inhibition of HDAC6 rescued cilia length and coverage in miR449-/- cells, consistent with its tubulin-deacetylating function. Altogether, our study establishes a link between miR449, ciliary dysfunction, and COPD pathogenesis.


Asunto(s)
Aurora Quinasa A/metabolismo , Histona Desacetilasa 6/metabolismo , MicroARNs , Enfermedad Pulmonar Obstructiva Crónica , Animales , Aurora Quinasa A/genética , Cilios/genética , Células Epiteliales , Ratones , MicroARNs/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Tubulina (Proteína)/genética
7.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1091-L1104, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34668437

RESUMEN

Since microRNA (miR)-223-3p modulates inflammatory responses and chronic obstructive pulmonary disease (COPD) is associated with amplified pulmonary inflammation, we hypothesized that miR-223-3p plays a role in COPD pathogenesis. Expression of miR-223-3p was measured in lung tissue of two independent cohorts with patients with GOLD stage II-IV COPD, never smokers, and smokers without COPD. The functional role of miR-223-3p was studied in deficient mice and on overexpression in airway epithelial cells from COPD and controls. We observed higher miR-223-3p levels in patients with COPD stage II-IV compared with (non)-smoking controls, and levels were associated with higher neutrophil numbers in bronchial biopsies of patients with COPD. MiR-223-3p expression was also increased in lungs and bronchoalveolar lavage of cigarette smoke (CS)-exposed mice. CS-induced neutrophil and monocyte lung infiltration was stronger in miR-223-deficient mice on acute (5 days) exposure, but attenuated on subchronic (4 wk) exposure. Additionally, miR-223 deficiency attenuated acute and subchronic CS-induced lung infiltration of dendritic cells and T lymphocytes. Finally, in vitro overexpression of miR-223-3p in non-COPD airway epithelial cells suppressed C-X-C motif chemokine ligand 8 (CXCL8) and granulocyte monocyte-colony stimulation factor (GM-CSF) secretion and gene expression of the proinflammatory transcription factor TRAF6. Importantly, this suppressive effect of miR-223-3p was compromised in COPD-derived cultures. In conclusion, we demonstrate that miR-223-3p is increased in lungs of patients with COPD and CS-exposed mice and is associated with neutrophilic inflammation. In vivo data indicate that miR-223 acts as negative regulator of acute CS-induced neutrophilic and monocytic inflammation. In vitro data suggest that miR-223-3p does so by suppressing proinflammatory airway epithelial responses, which is less effective in COPD epithelium.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Pulmón/patología , MicroARNs/genética , Neumonía/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Anciano , Animales , Citocinas/metabolismo , Femenino , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neumonía/inducido químicamente , Neumonía/genética , Neumonía/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
8.
Allergy ; 76(6): 1661-1678, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33128813

RESUMEN

In past 10 years, microRNAs (miRNAs) have gained scientific attention due to their importance in the pathophysiology of allergic diseases and their potential as biomarkers in liquid biopsies. They act as master post-transcriptional regulators that control most cellular processes. As one miRNA can target several mRNAs, often within the same pathway, dysregulated expression of miRNAs may alter particular cellular responses and contribute, or lead, to the development of various diseases. In this review, we give an overview of the current research on miRNAs in allergic diseases, including atopic dermatitis, allergic rhinitis, and asthma. Specifically, we discuss how individual miRNAs function in the regulation of immune responses in epithelial cells and specialized immune cells in response to different environmental factors and respiratory viruses. In addition, we review insights obtained from experiments with murine models of allergic airway and skin inflammation and offer an overview of studies focusing on miRNA discovery using profiling techniques and bioinformatic modeling of the network effect of multiple miRNAs. In conclusion, we highlight the importance of research into miRNA function in allergy and asthma to improve our knowledge of the molecular mechanisms involved in the pathogenesis of this heterogeneous group of diseases.


Asunto(s)
Asma , Dermatitis Atópica , MicroARNs , Rinitis Alérgica , Animales , Asma/genética , Ratones , MicroARNs/genética , Sistema Respiratorio , Rinitis Alérgica/genética
9.
Eur Respir J ; 56(3)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32499335

RESUMEN

BACKGROUND: Occupational asthma, induced by workplace exposures to low molecular weight agents such as toluene 2,4-diisocyanate (TDI), causes a significant burden to patients and society. Little is known about innate lymphoid cells (ILCs) in TDI-induced asthma. A critical regulator of ILC function is microRNA-155, a microRNA associated with asthma. OBJECTIVE: To determine whether TDI exposure modifies the number of ILCs in the lung and whether microRNA-155 contributes to TDI-induced airway inflammation and hyperresponsiveness. METHODS: C57BL/6 wild-type and microRNA-155 knockout mice were sensitised and challenged with TDI or vehicle. Intracellular cytokine expression in ILCs and T-cells was evaluated in bronchoalveolar lavage (BAL) fluid using flow cytometry. Peribronchial eosinophilia and goblet cells were evaluated on lung tissue, and airway hyperresponsiveness was measured using the forced oscillation technique. Putative type 2 ILCs (ILC2) were identified in bronchial biopsies of subjects with TDI-induced occupational asthma using immunohistochemistry. Human bronchial epithelial cells were exposed to TDI or vehicle. RESULTS: TDI-exposed mice had higher numbers of airway goblet cells, BAL eosinophils, CD4+ T-cells and ILCs, with a predominant type 2 response, and tended to have airway hyperresponsiveness. In TDI-exposed microRNA-155 knockout mice, inflammation and airway hyperresponsiveness were attenuated. TDI exposure induced IL-33 expression in human bronchial epithelial cells and in murine lungs, which was microRNA-155 dependent in mice. GATA3+CD3- cells, presumably ILC2, were present in bronchial biopsies. CONCLUSION: TDI exposure is associated with increased numbers of ILCs. The proinflammatory microRNA-155 is crucial in a murine model of TDI asthma, suggesting its involvement in the pathogenesis of occupational asthma due to low molecular weight agents.


Asunto(s)
MicroARNs , 2,4-Diisocianato de Tolueno , Animales , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Linfocitos , Ratones , Ratones Endogámicos C57BL , 2,4-Diisocianato de Tolueno/toxicidad
10.
Allergy ; 75(8): 1902-1917, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32460363

RESUMEN

Airway epithelial barrier dysfunction is frequently observed in asthma and may have important implications. The physical barrier function of the airway epithelium is tightly interwoven with its immunomodulatory actions, while abnormal epithelial repair responses may contribute to remodelling of the airway wall. We propose that abnormalities in the airway epithelial barrier play a crucial role in the sensitization to allergens and pathogenesis of asthma. Many of the identified susceptibility genes for asthma are expressed in the airway epithelium, supporting the notion that events at the airway epithelial surface are critical for the development of the disease. However, the exact mechanisms by which the expression of epithelial susceptibility genes translates into a functionally altered response to environmental risk factors of asthma are still unknown. Interactions between genetic factors and epigenetic regulatory mechanisms may be crucial for asthma susceptibility. Understanding these mechanisms may lead to identification of novel targets for asthma intervention by targeting the airway epithelium. Moreover, exciting new insights have come from recent studies using single-cell RNA sequencing (scRNA-Seq) to study the airway epithelium in asthma. This review focuses on the role of airway epithelial barrier function in the susceptibility to develop asthma and novel insights in the modulation of epithelial cell dysfunction in asthma.


Asunto(s)
Asma , Alérgenos , Asma/genética , Células Epiteliales , Epitelio , Humanos , Mucosa Respiratoria , Sistema Respiratorio
11.
Curr Opin Pulm Med ; 26(1): 10-19, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31724961

RESUMEN

PURPOSE OF REVIEW: Air pollution has adverse effects on the onset and morbidity of respiratory diseases, including asthma. In this review, we discuss recent insights into the effects of air pollution on the incidence and exacerbation of asthma. We focus on epidemiological studies that describe the association between air pollution exposure and development, mortality, persistence and exacerbations of asthma among different age groups. Moreover, we also provide an update on translational studies describing the mechanisms behind this association. RECENT FINDINGS: Mechanisms linking air pollutants such as particulate matter, nitrogen dioxide (NO2) and ozone to the development and exacerbation of asthma include the induction of both eosinophilic and neutrophilic inflammation driven by stimulation of airway epithelium and increase of pro-inflammatory cytokine production, oxidative stress and DNA methylation changes. Although exposure during foetal development is often reported as a crucial timeframe, exposure to air pollution is detrimental in people of all ages, thus influencing asthma onset as well as increase in asthma prevalence, mortality, persistence and exacerbation. SUMMARY: In conclusion, this review highlights the importance of reducing air pollution levels to avert the progressive increase in asthma incidence and morbidity.


Asunto(s)
Contaminación del Aire , Asma , Exposición a Riesgos Ambientales/prevención & control , Contaminación del Aire/efectos adversos , Contaminación del Aire/prevención & control , Asma/epidemiología , Asma/etiología , Asma/prevención & control , Humanos , Salud Pública
12.
Hepatology ; 68(2): 634-651, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29023811

RESUMEN

Hepatopulmonary syndrome (HPS) is a severe complication of cirrhosis with increased risk of mortality. Pulmonary microvascular alterations are key features of HPS; but underlying mechanisms are incompletely understood, and studies on HPS are limited to rats. Placental growth factor (PlGF), a proangiogenic molecule that is selectively involved in pathological angiogenesis, may play an important role in HPS development; however, its role has never been investigated. In this study, we validated an HPS model by common bile duct ligation (CBDL) in mice, investigated the kinetic changes in pulmonary angiogenesis and inflammation during HPS development, and provide evidence for a novel therapeutic strategy by targeting pathological angiogenesis. Mice with CBDL developed hypoxemia and intrapulmonary shunting on a background of liver fibrosis. Pulmonary alterations included increased levels of proangiogenic and inflammatory markers, which was confirmed in serum of human HPS patients. Increased PlGF production in HPS mice originated from alveolar type II cells and lung macrophages, as demonstrated by immunofluorescent staining. Dysfunctional vessel formation in CBDL mice was visualized by microscopy on vascular corrosion casts. Both prophylactic and therapeutic anti-PlGF (αPlGF) antibody treatment impeded HPS development, as demonstrated by significantly less intrapulmonary shunting and improved gas exchange. αPlGF treatment decreased endothelial cell dysfunction in vivo and in vitro and was accompanied by reduced pulmonary inflammation. Importantly, αPlGF therapy did not affect liver alterations, supporting αPlGF's ability to directly target the pulmonary compartment. CONCLUSION: CBDL in mice induces HPS, which is mediated by PlGF production; αPlGF treatment improves experimental HPS by counteracting pulmonary angiogenesis and might be an attractive therapeutic strategy for human HPS. (Hepatology 2017).


Asunto(s)
Síndrome Hepatopulmonar/metabolismo , Pulmón/patología , Neovascularización Patológica/metabolismo , Factor de Crecimiento Placentario/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Biomarcadores/metabolismo , Conducto Colédoco/cirugía , Modelos Animales de Enfermedad , Endoglina/sangre , Síndrome Hepatopulmonar/fisiopatología , Humanos , Ligadura/métodos , Hígado/patología , Cirrosis Hepática/patología , Masculino , Ratones , Factor de Crecimiento Placentario/antagonistas & inhibidores
13.
Respir Res ; 20(1): 179, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395084

RESUMEN

Since novel treatments to target eosinophilic inflammation in Type 2 asthma are emerging, we aimed to evaluate and meta-analyze the efficacy of monoclonal antibodies to reduce exacerbation rate. PubMed and Web of Science were searched for phase II and phase III randomized clinical trials with monoclonal antibodies targeting key mediators of type 2-associated asthma. Thirty trials were selected involving biologics that target the IL-5 pathway, IL-13, the common IL-4 and IL-13 receptor, IL-9, IL-2 and TSLP. As no head-to-head trials were retrieved from literature, we performed an arm-based network meta-analysis to compare effects on exacerbation rate between the different treatments.Mepolizumab, reslizumab and benralizumab significantly reduced the risk of exacerbations compared to placebo (by 47-52%, 50-60%, and 28-51% respectively). Reslizumab and benralizumab also improved lung function. Dupilumab and tezepelumab improved lung function in frequent exacerbators. Lebrikizumab had no significant effect on the number of exacerbations, symptom control or health-related quality of life. Tralokinumab improved lung function compared to placebo. Network meta-analysis of all treatment and placebo arms, showed no superiority of one biologic over the others. Large reductions in exacerbation rates were observed compared to placebo, though only benralizumab was sufficiently powered (n = 2051) to demonstrate significantly decreased exacerbation rates in the subgroup analysis of IL-5 acting agents compared to placebo.Monoclonal antibodies such as mepolizumab, reslizumab and benralizumab have proven their benefit to reduce exacerbation rates in severe persistent eosinophilic asthma in the published trials. However, no statistically significant superiority was observed of one biologic over the other in the network meta-analysis. More studies with direct head to head comparisons and better defined endotypes are required.


Asunto(s)
Antiasmáticos/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Asma/tratamiento farmacológico , Antiasmáticos/sangre , Anticuerpos Monoclonales/sangre , Asma/sangre , Asma/diagnóstico , Humanos , Metaanálisis en Red , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos
14.
J Allergy Clin Immunol ; 141(2): 549-559.e7, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28532656

RESUMEN

BACKGROUND: Chronic airway inflammatory diseases, such as chronic rhinosinusitis with nasal polyps and asthma, show increased nasal Staphylococcus aureus colonization. Staphylococcus aureus-derived serine protease-like protein (Spl) D and other closely related proteases secreted by S aureus have recently been identified as inducers of allergic asthma in human subjects and mice, but their mechanism of action is largely unknown. OBJECTIVE: We investigated the role of recombinant SplD in driving TH2-biased responses and IgE formation in a murine model of allergic asthma. METHODS: Allergic asthma was induced in C57BL/6 J wild-type mice, Toll-like receptor (TLR) 4 knockout (Tlr4-/-) mice, and recombination-activating gene (Rag2) knockout (Rag2-/-) mice by means of repeated intratracheal applications of SplD. Inflammatory parameters in the airways were assessed by means of flow cytometry, ELISA, Luminex, and immunohistochemistry. Serum SplD-specific IgE levels were analyzed by using ELISA. RESULTS: We observed that repeated intratracheal exposure to SplD led to IL-33 and eotaxin production, eosinophilia, bronchial hyperreactivity, and goblet cell hyperplasia in the airways. Blocking IL-33 activity with a soluble ST2 receptor significantly decreased the numbers of eosinophils, IL-13+ type 2 innate lymphoid cells and IL-13+CD4+ T cells and IL-5 and IL-13 production by lymph node cells but had no effect on IgE production. SplD-induced airway inflammation and IgE production were largely dependent on the presence of the functional adaptive immune system and independent of TLR4 signaling. CONCLUSION: The S aureus-derived protein SplD is a potent allergen of S aureus and induces a TH2-biased inflammatory response in the airways in an IL-33-dependent but TRL4-independent manner. The soluble ST2 receptor could be an efficient strategy to interfere with SplD-induced TH2 inflammation but does not prevent the allergic sensitization.


Asunto(s)
Asma/inmunología , Proteínas Bacterianas/toxicidad , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-33/inmunología , Serina Proteasas/toxicidad , Staphylococcus aureus/inmunología , Animales , Asma/inducido químicamente , Asma/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Modelos Animales de Enfermedad , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-33/genética , Ratones , Ratones Noqueados , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Staphylococcus aureus/patogenicidad , Células Th2/inmunología , Células Th2/patología
15.
Eur Respir J ; 51(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29773606

RESUMEN

Experimental models are critical for the understanding of lung health and disease and are indispensable for drug development. However, the pathogenetic and clinical relevance of the models is often unclear. Further, the use of animals in biomedical research is controversial from an ethical perspective.The objective of this task force was to issue a statement with research recommendations about lung disease models by facilitating in-depth discussions between respiratory scientists, and to provide an overview of the literature on the available models. Focus was put on their specific benefits and limitations. This will result in more efficient use of resources and greater reduction in the numbers of animals employed, thereby enhancing the ethical standards and translational capacity of experimental research.The task force statement addresses general issues of experimental research (ethics, species, sex, age, ex vivo and in vitro models, gene editing). The statement also includes research recommendations on modelling asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, lung infections, acute lung injury and pulmonary hypertension.The task force stressed the importance of using multiple models to strengthen validity of results, the need to increase the availability of human tissues and the importance of standard operating procedures and data quality.


Asunto(s)
Experimentación Animal/ética , Investigación Biomédica/normas , Modelos Animales de Enfermedad , Trastornos Respiratorios , Comités Consultivos , Animales , Europa (Continente) , Humanos , Sociedades Médicas
16.
Clin Exp Allergy ; 48(12): 1665-1675, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30159930

RESUMEN

BACKGROUND: Clinical and experimental studies have identified a crucial role for IL-33 and its receptor ST2 in allergic asthma. Inhalation of traffic-related pollutants, such as diesel exhaust particles (DEP), facilitates the development of asthma and can cause exacerbations of asthma. However, it is unknown whether IL-33/ST2 signalling contributes to the enhancing effects of air pollutants on allergic airway responses. OBJECTIVE: We aim to investigate the functional role of IL-33/ST2 signalling in DEP-enhanced allergic airway responses, using an established murine model. METHODS: C57BL/6J mice were exposed to saline, DEP alone, house dust mite (HDM) alone or combined DEP+HDM. To inhibit IL-33 signalling, recombinant soluble ST2 (r-sST2) was given prophylactically (ie, during the whole experimental protocol) or therapeutically (ie, at the end of the experimental protocol). Airway hyperresponsiveness and the airway inflammatory responses were assessed in bronchoalveolar lavage fluid (BALF) and lung. RESULTS: Combined exposure to DEP+HDM increased IL-33 and ST2 expression in lung, elevated inflammatory responses and bronchial hyperresponsiveness compared to saline, sole DEP or sole HDM exposure. Prophylactic interference with the IL-33/ST2 signalling pathway impaired the DEP-enhanced allergic airway inflammation in the BALF, whereas effects on lung inflammation and airway hyperresponsiveness were minimal. Treatment with r-sST2 at the end of the experimental protocol did not modulate the DEP-enhanced allergic airway responses. CONCLUSION: Our data suggest that the IL-33/ST2 pathway contributes to the onset of DEP-enhanced allergic airway inflammation.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Interleucina-33/metabolismo , Hipersensibilidad Respiratoria/etiología , Hipersensibilidad Respiratoria/metabolismo , Transducción de Señal , Alérgenos/inmunología , Animales , Biomarcadores , Modelos Animales de Enfermedad , Femenino , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones , Material Particulado/efectos adversos , Pyroglyphidae/inmunología , Proteínas Recombinantes/farmacología , Hipersensibilidad Respiratoria/tratamiento farmacológico , Hipersensibilidad Respiratoria/patología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo
17.
J Immunol ; 196(4): 1882-90, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26773141

RESUMEN

Inhalation of traffic-related particulate matter (e.g., diesel exhaust particles [DEPs]) is associated with acute inflammatory responses in the lung, and it promotes the development and aggravation of allergic airway diseases. We previously demonstrated that exposure to DEP was associated with increased recruitment and maturation of monocytes and conventional dendritic cells (DCs), resulting in TH2 polarization. Monocytes and immature DCs express the G-protein coupled receptor chemR23, which binds the chemoattractant chemerin. Using chemR23 knockout (KO) and corresponding wild-type (WT) mice, we determined the role of chemR23 signaling in response to acute exposure to DEPs and in response to DEP-enhanced house dust mite (HDM)-induced allergic airway inflammation. Exposure to DEP alone, as well as combined exposure to DEP plus HDM, elevated the levels of chemerin in the bronchoalveolar lavage fluid of WT mice. In response to acute exposure to DEPs, monocytes and monocyte-derived DCs accumulated in the lungs of WT mice, but this response was significantly attenuated in chemR23 KO mice. Concomitant exposure to DEP plus HDM resulted in allergic airway inflammation with increased eosinophilia, goblet cell metaplasia, and TH2 cytokine production in WT mice, which was further enhanced in chemR23 KO mice. In conclusion, we demonstrated an opposing role for chemR23 signaling depending on the context of DEP-induced inflammation. The chemR23 axis showed proinflammatory properties in a model of DEP-induced acute lung inflammation, in contrast to anti-inflammatory effects in a model of DEP-enhanced allergic airway inflammation.


Asunto(s)
Hipersensibilidad/inmunología , Neumonía/inmunología , Receptores Acoplados a Proteínas G/inmunología , Animales , Lavado Broncoalveolar , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Material Particulado/toxicidad , Neumonía/etiología , Pyroglyphidae/inmunología , Receptores de Quimiocina , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/inmunología , Emisiones de Vehículos/toxicidad
19.
Am J Respir Crit Care Med ; 195(1): 43-56, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27409149

RESUMEN

RATIONALE: Aberrant expression of microRNAs (miRNAs) can have a detrimental role in disease pathogenesis. OBJECTIVES: To identify dysregulated miRNAs in lung tissue of patients with chronic obstructive pulmonary disease (COPD). METHODS: We performed miRNA and mRNA profiling using high throughput stem-loop reverse-transcriptase quantitative polymerase chain reaction and mRNA microarray, respectively, on lung tissue of 30 patients (screening cohort) encompassing 8 never-smokers, 10 smokers without airflow limitation, and 12 smokers with COPD. Differential expression of miRNA-218-5p (miR-218-5p) was validated by reverse-transcriptase quantitative polymerase chain reaction in an independent cohort of 71 patients, an in vivo murine model of COPD, and primary human bronchial epithelial cells. Localization of miR-218-5p was assessed by in situ hybridization. In vitro and in vivo perturbation of miR-218-5p combined with RNA sequencing and gene set enrichment analysis was used to elucidate its functional role in COPD pathogenesis. MEASUREMENTS AND MAIN RESULTS: Several miRNAs were differentially expressed among the different patient groups. Interestingly, miR-218-5p was significantly down-regulated in smokers without airflow limitation and in patients with COPD compared with never-smokers. Decreased pulmonary expression of miR-218-5p was validated in an independent validation cohort, in cigarette smoke-exposed mice, and in human bronchial epithelial cells. Importantly, expression of miR-218-5p strongly correlated with airway obstruction. Furthermore, cellular localization of miR-218-5p in human and murine lung revealed highest expression of miR-218-5p in the bronchial airway epithelium. Perturbation experiments with a miR-218-5p mimic or inhibitor demonstrated a protective role of miR-218-5p in cigarette smoke-induced inflammation and COPD. CONCLUSIONS: We highlight a role for miR-218-5p in the pathogenesis of COPD.


Asunto(s)
MicroARNs/fisiología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Adulto , Anciano , Animales , Bronquios/metabolismo , Estudios de Casos y Controles , Femenino , Perfilación de la Expresión Génica , Humanos , Pulmón/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Mucosa Respiratoria/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
J Allergy Clin Immunol ; 139(1): 246-257.e4, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27315767

RESUMEN

BACKGROUND: Although the prominent role of TH2 cells in type 2 immune responses is well established, the newly identified type 2 innate lymphoid cells (ILC2s) can also contribute to orchestration of allergic responses. Several experimental and epidemiologic studies have provided evidence that allergen-induced airway responses can be further enhanced on exposure to environmental pollutants, such as diesel exhaust particles (DEPs). However, the components and pathways responsible remain incompletely known. OBJECTIVE: We sought to investigate the relative contribution of ILC2 and adaptive TH2 cell responses in a murine model of DEP-enhanced allergic airway inflammation. METHODS: Wild-type, Gata-3+/nlslacZ (Gata-3-haploinsufficient), RAR-related orphan receptor α (RORα)fl/flIL7RCre (ILC2-deficient), and recombination-activating gene (Rag) 2-/- mice were challenged with saline, DEPs, or house dust mite (HDM) or DEP+HDM. Airway hyperresponsiveness, as well as inflammation, and intracellular cytokine expression in ILC2s and TH2 cells in the bronchoalveolar lavage fluid and lung tissue were assessed. RESULTS: Concomitant DEP+HDM exposure significantly enhanced allergic airway inflammation, as characterized by increased airway eosinophilia, goblet cell metaplasia, accumulation of ILC2s and TH2 cells, type 2 cytokine production, and airway hyperresponsiveness compared with sole DEPs or HDM. Reduced Gata-3 expression decreased the number of functional ILC2s and TH2 cells in DEP+HDM-exposed mice, resulting in an impaired DEP-enhanced allergic airway inflammation. Interestingly, although the DEP-enhanced allergic inflammation was marginally reduced in ILC2-deficient mice that received combined DEP+HDM, it was abolished in DEP+HDM-exposed Rag2-/- mice. CONCLUSION: These data indicate that dysregulation of ILC2s and TH2 cells attenuates DEP-enhanced allergic airway inflammation. In addition, a crucial role for the adaptive immune system was shown on concomitant DEP+HDM exposure.


Asunto(s)
Contaminantes Atmosféricos , Antígenos Dermatofagoides/inmunología , Linfocitos/inmunología , Material Particulado , Hipersensibilidad Respiratoria/inmunología , Emisiones de Vehículos , Inmunidad Adaptativa , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Células Cultivadas , Citocinas/inmunología , Femenino , Factor de Transcripción GATA3/inmunología , Inmunidad Innata , Pulmón/inmunología , Pulmón/patología , Ganglios Linfáticos/inmunología , Ratones Endogámicos C57BL , Ratones Transgénicos , Hipersensibilidad Respiratoria/inducido químicamente , Hipersensibilidad Respiratoria/patología , Hipersensibilidad Respiratoria/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA