Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Anal Chem ; 91(8): 4943-4947, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30908033

RESUMEN

Diagnosis of infectious disease in patients, including human immunodeficiency virus (HIV) infection, can be achieved through the detection of specific antibodies produced by the immune system. We have previously shown that macromolecules such as antibodies can be efficiently detected in complex biological samples by sterically inhibiting the hybridization of conjugated complementary DNA strands to electrode-bound DNA strands. Here, we report a peptide-mediated electrochemical steric hindrance hybridization assay, PeSHHA, specially for the detection of antibodies against the gp41 protein of HIV-1. We show that the sensitivity of this PeSHHA can be significantly enhanced using nanostructured electrodes and demonstrate the rapid, one-step detection of HIV-1 antibodies directly in clinical samples.


Asunto(s)
Técnicas Biosensibles/métodos , Electroquímica/métodos , Anticuerpos Anti-VIH/análisis , VIH-1/inmunología , Péptidos/metabolismo , Electrodos , Anticuerpos Anti-VIH/sangre , Anticuerpos Anti-VIH/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , Humanos , Nanoestructuras/química
2.
Mikrochim Acta ; 186(12): 773, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31720840

RESUMEN

This review, with 201 references, describes the recent advancement in the application of carbonaceous nanomaterials as highly conductive platforms in electrochemical biosensing. The electrochemical biosensing is described in introduction by classifying biosensors into catalytic-based and affinity-based biosensors and statistically demonstrates the most recent published works in each category. The introduction is followed by sections on electrochemical biosensors configurations and common carbonaceous nanomaterials applied in electrochemical biosensing, including graphene and its derivatives, carbon nanotubes, mesoporous carbon, carbon nanofibers and carbon nanospheres. In the following sections, carbonaceous catalytic-based and affinity-based biosensors are discussed in detail. In the category of catalytic-based biosensors, a comparison between enzymatic biosensors and non-enzymatic electrochemical sensors is carried out. Regarding the affinity-based biosensors, scholarly articles related to biological elements such as antibodies, deoxyribonucleic acids (DNAs) and aptamers are discussed in separate sections. The last section discusses recent advancements in carbonaceous screen-printed electrodes as a growing field in electrochemical biosensing. Tables are presented that give an overview on the diversity of analytes, type of materials and the sensors performance. Ultimately, general considerations, challenges and future perspectives in this field of science are discussed. Recent findings suggest that interests towards 2D nanostructured electrodes based on graphene and its derivatives are still growing in the field of electrochemical biosensing. That is because of their exceptional electrical conductivity, active surface area and more convenient production methods compared to carbon nanotubes. Graphical abstract Schematic representation of carbonaceous nanomaterials used in electrochemical biosensing. The content is classified into non-enzymatic sensors and affinity/ catalytic biosensors. Recent publications are tabulated and compared, considering materials, target, limit of detection and linear range of detection.


Asunto(s)
Anticuerpos/análisis , Aptámeros de Nucleótidos/análisis , Técnicas Biosensibles , ADN/análisis , Técnicas Electroquímicas , Nanotubos de Carbono/química , Tamaño de la Partícula , Propiedades de Superficie
3.
Small ; 14(35): e1801893, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30048039

RESUMEN

Efficient capture and rapid detection of pathogenic bacteria from body fluids lead to early diagnostics of bacterial infections and significantly enhance the survival rate. We propose a universal nano/microfluidic device integrated with a 3D nanostructured detection platform for sensitive and quantifiable detection of pathogenic bacteria. Surface characterization of the nanostructured detection platform confirms a uniform distribution of hierarchical 3D nano-/microisland (NMI) structures with spatial orientation and nanorough protrusions. The hierarchical 3D NMI is the unique characteristic of the integrated device, which enables enhanced capture and quantifiable detection of bacteria via both a probe-free and immunoaffinity detection method. As a proof of principle, we demonstrate probe-free capture of pathogenic Escherichia coli (E. coli) and immunocapture of methicillin-resistant-Staphylococcus aureus (MRSA). Our device demonstrates a linear range between 50 and 104 CFU mL-1 , with average efficiency of 93% and 85% for probe-free detection of E. coli and immunoaffinity detection of MRSA, respectively. It is successfully demonstrated that the spatial orientation of 3D NMIs contributes in quantifiable detection of fluorescently labeled bacteria, while the nanorough protrusions contribute in probe-free capture of bacteria. The ease of fabrication, integration, and implementation can inspire future point-of-care devices based on nanomaterial interfaces for sensitive and high-throughput optical detection.


Asunto(s)
Escherichia coli/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Microfluídica/instrumentación , Microfluídica/métodos , Nanoestructuras/química , Simulación por Computador , Escherichia coli/ultraestructura , Oro/química , Staphylococcus aureus Resistente a Meticilina/ultraestructura , Viabilidad Microbiana , Nanoestructuras/ultraestructura , Propiedades de Superficie
4.
Anal Chem ; 89(18): 9751-9757, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28829912

RESUMEN

The availability of rapid approaches for quantitative detection of biomarkers would drastically impact global health by enabling decentralized disease diagnosis anywhere that patient care is administered. A promising new approach, the electrochemical steric hindrance hybridization assay (eSHHA) has been introduced for quantitative detection of large proteins (e.g., antibodies) with a low nanomolar detection limit within 10 min. Here, we report the use of a nanostructured microelectrode (NME) platform for eSHHA that improves the performance of this approach by increasing the efficiency and kinetics of DNA hybridization. We demonstrated that eSHHA on nanostructured microelectrodes leverages three effects: (1) steric hindrance effects at the nanoscale, (2) a size-dependent hybridization rate of DNA complexes, and (3) electrode morphology-dependent blocking effects. As a proof of concept, we showed that the sensitivity of eSHHA toward a model antibody is enhanced using NMEs as scaffolds for this reaction. We improved the detection limit of eSHHA, taking advantage of nanostructured surfaces to allow the use of longer capture strands for detection of proteins. Finally, we concluded that using the eSHHA approach in conjunction with nanostructured microelectrodes is an advantageous alternative to conventional macroelectrodes as the sensitivity and detection limits are enhanced.


Asunto(s)
Técnicas Electroquímicas , Nanoestructuras/química , Hibridación de Ácido Nucleico , Proteínas/análisis , Humanos , Cinética , Microelectrodos , Tamaño de la Partícula , Propiedades de Superficie
5.
J Am Chem Soc ; 137(50): 15596-9, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26339721

RESUMEN

Here we describe a highly selective DNA-based electrochemical sensor that utilizes steric hindrance effects to signal the presence of large macromolecules in a single-step procedure. We first show that a large macromolecule, such as a protein, when bound to a signaling DNA strand generates steric hindrance effects, which limits the ability of this DNA to hybridize to a surface-attached complementary strand. We demonstrate that the efficiency of hybridization of this signaling DNA is inversely correlated with the size of the molecule attached to it, following a semilogarithmic relationship. Using this steric hindrance hybridization assay in an electrochemical format (eSHHA), we demonstrate the multiplexed, quantitative, one-step detection of various macromolecules in the low nanomolar range, in <10 min directly in whole blood. We discuss the potential applications of this novel signaling mechanism in the field of point-of-care diagnostic sensors.


Asunto(s)
Proteínas Sanguíneas/análisis , ADN/química , Electroquímica/métodos
6.
ACS Sens ; 8(6): 2149-2158, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37207303

RESUMEN

Cryptosporidium parvum is a high-risk and opportunistic waterborne parasitic pathogen with highly infectious oocysts that can survive harsh environmental conditions for long periods. Current state-of-the-art methods are limited to lengthy imaging and antibody-based detection techniques that are slow, labor-intensive, and demand trained personnel. Therefore, the development of new sensing platforms for rapid and accurate identification at the point-of-care (POC) is essential to improve public health. Herein, we propose a novel electrochemical microfluidic aptasensor based on hierarchical 3D gold nano-/microislands (NMIs), functionalized with aptamers specific to C. parvum. We used aptamers as robust synthetic biorecognition elements with a remarkable ability to bind and discriminate among molecules to develop a highly selective biosensor. Also, the 3D gold NMIs feature a large active surface area that provides high sensitivity and a low limit of detection (LOD), especially when they are combined with aptamers,. The performance of the NMI aptasensor was assessed by testing the biosensor's ability to detect different concentrations of C. parvum oocysts spiked in different sample matrices, i.e., buffer, tap water, and stool, within 40 min detection time. The electrochemical measurements showed an acceptable LOD of 5 oocysts mL-1 in buffer medium, as well as 10 oocysts mL-1 in stool and tap water media, over a wide linear range of 10-100,000 oocysts mL-1. Moreover, the NMI aptasensor recognized C. parvum oocysts with high selectivity while exhibiting no significant cross-reactivity to other related coccidian parasites. The specific feasibility of the aptasensor was further demonstrated by the detection of the target C. parvum in patient stool samples. Our assay showed coherent results with microscopy and real-time quantitative polymerase chain reaction, achieving high sensitivity and specificity with a significant signal difference (p < 0.001). Therefore, the proposed microfluidic electrochemical biosensor platform could be a stepping stone for the development of rapid and accurate detection of parasites at the POC.


Asunto(s)
Técnicas Biosensibles , Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animales , Humanos , Microfluídica , Criptosporidiosis/diagnóstico , Agua , Oligonucleótidos , Oocistos , Oro/química
7.
Adv Sci (Weinh) ; 9(9): e2104033, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34957708

RESUMEN

Rapid diagnostic testing has become a mainstay of patient care, using easily obtained samples such as blood or urine to facilitate sample analysis at the point-of-care. These tests rely on the detection of disease or organ-specific biomarkers that have been well characterized for a particular disorder. Currently, there is no rapid diagnostic test for hearing loss, which is one of the most prevalent sensory disorders in the world. In this review, potential biomarkers for inner ear-related disorders, their detection, and quantification in bodily fluids are described. The authors discuss lesion-specific changes in cell-free deoxyribonucleic acids (DNAs), micro-ribonucleic acids (microRNAs), proteins, and metabolites, in addition to recent biosensor advances that may facilitate rapid and precise detection of these molecules. Ultimately, these biomarkers may be used to provide accurate diagnostics regarding the site of damage in the inner ear, providing practical information for individualized therapy and assessment of treatment efficacy in the future.


Asunto(s)
Oído Interno , Pérdida Auditiva , Enfermedades del Laberinto , Pruebas en el Punto de Atención , Biomarcadores/análisis , Pérdida Auditiva/diagnóstico , Humanos , Enfermedades del Laberinto/diagnóstico
8.
Adv Sci (Weinh) ; 9(33): e2204246, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36253095

RESUMEN

The last pandemic exposed critical gaps in monitoring and mitigating the spread of viral respiratory infections at the point-of-need. A cost-effective multiplexed fluidic device (NFluidEX), as a home-test kit analogous to a glucometer, that uses saliva and blood for parallel quantitative detection of viral infection and body's immune response in an automated manner within 11 min is proposed. The technology integrates a versatile biomimetic receptor based on molecularly imprinted polymers in a core-shell structure with nano gold electrodes, a multiplexed fluidic-impedimetric readout, built-in saliva collection/preparation, and smartphone-enabled data acquisition and interpretation. NFluidEX is validated with Influenza A H1N1 and SARS-CoV-2 (original strain and variants of concern), and achieves low detection limit in saliva and blood for the viral proteins and the anti-receptor binding domain (RBD) Immunoglobulin G (IgG) and Immunoglobulin M (IgM), respectively. It is demonstrated that nanoprotrusions of gold electrodes are essential for the fine templating of antibodies and spike proteins during molecular imprinting, and differentiation of IgG and IgM in whole blood. In the clinical setting, NFluidEX achieves 100% sensitivity and 100% specificity by testing 44 COVID-positive and 25 COVID-negative saliva and blood samples on par with the real-time quantitative polymerase chain reaction (p < 0.001, 95% confidence) and the enzyme-linked immunosorbent assay.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Humanos , SARS-CoV-2 , Saliva/química , Anticuerpos Antivirales , Inmunoglobulina G , Inmunoglobulina M , Inmunidad
9.
Analyst ; 136(11): 2322-9, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21494708

RESUMEN

A simple modified TiO(2) nanotubes electrode was fabricated by electrodeposition of Pd, Pt and Au nanoparticles. The TiO(2) nanotubes electrode was prepared using the anodizing method, followed by modifying Pd nanoparticles onto the tubes surface, offering a uniform conductive surface for electrodeposition of Pt and Au. The performance of the modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry methods. The Au/Pt/Pd/TiO(2) NTs modified electrode represented a high sensitivity towards individual detection of dopamine as well as simultaneous detection of dopamine and uric acid using 0.1 M phosphate buffer solution (pH 7.00) as the base solution. In both case, electro-oxidation peak currents of dopamine were linearly related to accumulated concentration over a wide concentration range of 5.0 × 10(-8) to 3.0 × 10(-5) M. However in the same range of dopamine concentration, the sensitivity had a significant loss at Pt/Pd/TiO(2) NTs electrode, suggesting the necessity for Au nanoparticles in modified electrode. The limit of the detection was determined as 3 × 10(-8) M for dopamine at signal-to-noise ratio equal to 3. Furthermore, the Au/Pt/Pd/TiO(2) NTs modified electrode was able to distinguish the oxidation response of dopamine, uric acid and ascorbic acid in mixture solution of different acidity. It was shown that the modified electrode possessed a very good reproducibility and long-term stability. The method was also successfully applied for determination of DA in human urine samples with satisfactory results.


Asunto(s)
Ácido Ascórbico/química , Dopamina/análisis , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Metales/química , Nanotubos/química , Ácido Úrico/química , Dopamina/orina , Electrodos , Oro/química , Humanos , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Paladio/química , Titanio/química
10.
J Nanosci Nanotechnol ; 11(8): 6668-75, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22103066

RESUMEN

The present work describes sensing application of modified TiO2 nanotubes having carbon-Pt nanoparticles for simultaneous detection of dopamine and uric acid. The TiO2 nanotubes electrode was prepared using anodizing method, followed by electrodeposition of Pt nanoparticles onto the tubes. Carbon was deposited by decomposition of polyethylene glycol in a tube furnace to improve the conductivity. The C-Pt-TiO2 nanotubes modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry methods. The modified electrode displayed high sensitivity towards the oxidation of dopamine and uric acid in a phosphate buffer solution (pH 7.00). The electro-oxidation currents of dopamine and uric acid were linearly related to the concentration over a wide range of 3.5 x 10(-8) M to 1 x 10(-5) M and 1 x 10(-7) M to 3 x 10(-5) M respectively. The limit of detection was determined as 2 x 10(-10) M for dopamine at signal-to-noise ratio of 3. The interference of uric acid was also investigated. Electro-oxidation currents of dopamine in the presence of fix amount of uric acid represented a linear behaviour towards successive addition of dopamine in range of 1 x 10(-7) M to 1 x 10(-5) M. Furthermore, in a solution containing dopamine, uric acid and ascorbic acid the overlapped oxidation peaks of dopamine and ascorbic acid could be easily separated by using C-Pt-TiO2 nanotubes modified electrode.


Asunto(s)
Carbono/química , Dopamina/análisis , Nanopartículas del Metal , Platino (Metal)/química , Titanio/química , Ácido Úrico/análisis , Electroquímica , Microscopía Electrónica de Rastreo , Oxidación-Reducción
11.
Biosens Bioelectron ; 176: 112905, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33358285

RESUMEN

Electrochemical biosensors combine the selectivity of electrochemical signal transducers with the specificity of biomolecular recognition strategies. Although they have been broadly studied in different areas of diagnostics, they are not yet fully commercialized. During the COVID-19 pandemic, electrochemical platforms have shown the potential to address significant limitations of conventional diagnostic platforms, including accuracy, affordability, and portability. The advantages of electrochemical platforms make them a strong candidate for rapid point-of-care detection of SARS-CoV-2 infection by targeting not only viral RNA but antigens and antibodies. Herein, we reviewed advancements in electrochemical biosensing platforms towards the detection of SARS-CoV-2 through studying similar viruses.


Asunto(s)
Técnicas Biosensibles/instrumentación , Prueba de COVID-19/instrumentación , COVID-19/diagnóstico , Pandemias , SARS-CoV-2 , Anticuerpos Antivirales/análisis , Antígenos Virales/análisis , Técnicas Biosensibles/métodos , COVID-19/inmunología , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19/instrumentación , Prueba de Ácido Nucleico para COVID-19/métodos , Prueba Serológica para COVID-19/instrumentación , Prueba Serológica para COVID-19/métodos , Prueba de COVID-19/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Humanos , Pruebas en el Punto de Atención , ARN Viral/análisis , ARN Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación
12.
ACS Appl Mater Interfaces ; 12(6): 7411-7422, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31922713

RESUMEN

The chalcogenide material MoS2 has been recognized as a promising candidate for photoelectrochemical (PEC) applications due to its enhanced photocatalytic and electrocatalytic activities. However, few reports have been focused on the designated catalytic MoS2 for the nonenzymatic PEC sensing of small molecules. Here, we report on a novel in situ and fab-free method for the direct growth of three-dimensional (3D) porous Peony-like MoS2 nanosheets supported by nanohole-patterned TiO2 and composited with gold deposits. The direct growth resulted in enhanced electrical conductivity between the substrate and 3D-standing MoS2 nanosheets and thus the uniform distribution of gold electrodeposits from the MoS2 lattice. The hybrid 3D MoS2/gold nanocomposite demonstrated enhanced abundance of exposed catalytic edge sites and improved optic and electrical coupling, which ultimately led to excellent photoelectrochemical activities. We performed full characterization of the morphology, crystallinity, lattice configuration, and optical properties of hybrid MoS2 nanosheets via field emission scanning microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray, Raman, and UV-vis spectroscopies. The 3D COMSOL simulation also confirmed enhanced electric field distribution at the interface of the proposed 3D MoS2/gold nanocomposite electrode in comparison with other morphologies. We acquired the Peony-like 3D MoS2/Au composite for photoelectrochemical sensing of glucose in buffer and diluted plasma solutions with a very low limit of detection of 1.3 nM and superb sensitivity in plasma. Overall, we have successfully synergized both electrical and optical merits from individual components to form a novel composite, which offered an effective scaffold for the development of PEC sensors.

13.
ACS Appl Mater Interfaces ; 12(20): 23298-23310, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32302093

RESUMEN

Hierarchical 3D gold nano-/microislands (NMIs) are favorably structured for direct and probe-free capture of bacteria in optical and electrochemical sensors. Moreover, their unique plasmonic properties make them a suitable candidate for plasmonic-assisted electrochemical sensors, yet the charge transfer needs to be improved. In the present study, we propose a novel plasmonic-assisted electrochemical impedimetric detection platform based on hybrid structures of 3D gold NMIs and graphene (Gr) nanosheets for probe-free capture and label-free detection of bacteria. The inclusion of Gr nanosheets significantly improves the charge transfer, addressing the central issue of using 3D gold NMIs. Notably, the 3D gold NMIs/Gr detection platform successfully distinguishes between various types of bacteria including Escherichia coli (E. coli) K12, Pseudomonas putida (P. putida), and Staphylococcus epidermidis (S. epidermidis) when electrochemical impedance spectroscopy is applied under visible light. We show that distinguishable and label-free impedimetric detection is due to dissimilar electron charge transfer caused by various sizes, morphologies, and compositions of the cells. In addition, the finite-difference time-domain (FDTD) simulation of the electric field indicates the intensity of charge distribution at the edge of the NMI structures. Furthermore, the wettability studies demonstrated that contact angle is a characteristic feature of each type of captured bacteria on the 3D gold NMIs, which strongly depends on the shape, morphology, and size of the cells. Ultimately, exposing the platform to various dilutions of the three bacteria strains revealed the ability to detect dilutions as low as ∼20 CFU/mL in a wide linear range of detection of 2 × 101-105, 2 × 101-104, and 1 × 102-1 × 105 CFU/mL for E. coli, P. putida, and S. epidermidis, respectively. The proposed hybrid structure of 3D gold NMIs and Gr, combined by novel plasmonic and conventional impedance spectroscopy techniques, opens interesting avenues in ultrasensitive label-free detection of bacteria with low cost and high stability.


Asunto(s)
Bacterias/aislamiento & purificación , Carga Bacteriana/métodos , Oro/química , Grafito/química , Dispositivos Laboratorio en un Chip , Nanoestructuras/química , Espectroscopía Dieléctrica , Escherichia coli K12/aislamiento & purificación , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Pseudomonas putida/aislamiento & purificación , Staphylococcus epidermidis/aislamiento & purificación , Orina/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA