RESUMEN
Genomic copy number variants (CNVs) are routinely identified and reported back to patients with neuropsychiatric disorders, but their quantitative effects on essential traits such as cognitive ability are poorly documented. We have recently shown that the effect size of deletions on cognitive ability can be statistically predicted using measures of intolerance to haploinsufficiency. However, the effect sizes of duplications remain unknown. It is also unknown if the effect of multigenic CNVs are driven by a few genes intolerant to haploinsufficiency or distributed across tolerant genes as well. Here, we identified all CNVs > 50 kilobases in 24,092 individuals from unselected and autism cohorts with assessments of general intelligence. Statistical models used measures of intolerance to haploinsufficiency of genes included in CNVs to predict their effect size on intelligence. Intolerant genes decrease general intelligence by 0.8 and 2.6 points of intelligence quotient when duplicated or deleted, respectively. Effect sizes showed no heterogeneity across cohorts. Validation analyses demonstrated that models could predict CNV effect sizes with 78% accuracy. Data on the inheritance of 27,766 CNVs showed that deletions and duplications with the same effect size on intelligence occur de novo at the same frequency. We estimated that around 10,000 intolerant and tolerant genes negatively affect intelligence when deleted, and less than 2% have large effect sizes. Genes encompassed in CNVs were not enriched in any GOterms but gene regulation and brain expression were GOterms overrepresented in the intolerant subgroup. Such pervasive effects on cognition may be related to emergent properties of the genome not restricted to a limited number of biological pathways.
Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma , Cognición , Variaciones en el Número de Copia de ADN/genética , Dosificación de Gen , Humanos , Pruebas de InteligenciaRESUMEN
It is challenging to estimate the phenotypic impact of the structural genome changes known as copy-number variations (CNVs), since there are many unique CNVs which are nonrecurrent, and most are too rare to be studied individually. In recent work, we found that CNV-aggregated genomic annotations, that is, specifically the intolerance to mutation as measured by the pLI score (probability of being loss-of-function intolerant), can be strong predictors of intellectual quotient (IQ) loss. However, this aggregation method only estimates the individual CNV effects indirectly. Here, we propose the use of hierarchical Bayesian models to directly estimate individual effects of rare CNVs on measures of intelligence. Annotation information on the impact of major mutations in genomic regions is extracted from genomic databases and used to define prior information for the approach we call HBIQ. We applied HBIQ to the analysis of CNV deletions and duplications from three datasets and identified several genomic regions containing CNVs demonstrating significant deleterious effects on IQ, some of which validate previously known associations. We also show that several CNVs were identified as deleterious by HBIQ even if they have a zero pLI score, and the converse is also true. Furthermore, we show that our new model yields higher out-of-sample concordance (78%) for predicting the consequences of carrying known recurrent CNVs compared with our previous approach.