Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Biol Chem ; 291(46): 24036-24040, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27645994

RESUMEN

The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4, and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine sulfoxide reductase B1), and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15-kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV), and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing, and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates.


Asunto(s)
Selenoproteínas/clasificación , Selenoproteínas/genética , Humanos , Terminología como Asunto
2.
Arch Biochem Biophys ; 617: 120-128, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27638050

RESUMEN

Reversible oxidation of Cys residues is a crucial element of redox homeostasis and signaling. According to a popular concept in oxidative stress signaling, the oxidation of targets of signals can only take place following an overwhelming of the cellular antioxidant capacity. This concept, however, ignores the activation of feedback mechanisms possibly leading to a paradoxical effect. In a model of cancer stem cells (CSC), stably overexpressing the TAZ oncogene, we observed that the increased formation of oxidants is associated with a globally more reduced state of proteins. Redox proteomics revealed that several proteins, capable of undergoing reversible redox transitions, are indeed more reduced while just few are more oxidized. Among the proteins more oxidized, G6PDH emerges as both more expressed and activated by oxidation. This accounts for the observed more reduced state of the NADPH/NADP+ couple. The dynamic redox flux generating this apparently paradoxical effect is rationalized in a computational system biology model highlighting the crucial role of G6PDH activity on the rate of redox transitions eventually leading to the reduction of reversible redox switches.


Asunto(s)
Células Madre Neoplásicas/citología , Oxidación-Reducción , Línea Celular Transformada , Línea Celular Tumoral , Glucosafosfato Deshidrogenasa/metabolismo , Glutarredoxinas/metabolismo , Humanos , Mutación , Nucleótidos/genética , Estrés Oxidativo , Oxígeno/química , Proteómica , Piridinas/química , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/metabolismo
3.
J Mol Cell Cardiol ; 73: 2-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24512843

RESUMEN

A principal characteristic of redox signaling is that it involves an oxidation-reduction reaction or covalent adduct formation between the sensor signaling protein and second messenger. Non-redox signaling may involve alteration of the second messenger as in hydrolysis of GTP by G proteins, modification of the signaling protein as in farnesylation, or simple non-covalent binding of an agonist or second messenger. The chemistry of redox signaling is reviewed here. Specifically we have described how among the so-called reactive oxygen species, only hydroperoxides clearly fit the role of a second messenger. Consideration of reaction kinetics and cellular location strongly suggests that for hydroperoxides, particular protein cysteines are the targets and that the requirements for redox signaling is that these cysteines are in microenvironments in which the cysteine is ionized to the thiolate, and a proton can be donated to form a leaving group. The chemistry described here is the same as occurs in the cysteine and selenocysteine peroxidases that are generally considered the primary defense against oxidative stress. But, these same enzymes can also act as the sensors and transducer for signaling. Conditions that would allow specific signaling by peroxynitrite and superoxide are also defined. Signaling by other electrophiles, which includes lipid peroxidation products, quinones formed from polyphenols and other metabolites also involves reaction with specific protein thiolates. Again, kinetics and location are the primary determinants that provide specificity required for physiological signaling although enzymatic catalysis is not likely involved. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".


Asunto(s)
Oxidación-Reducción , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Peroxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología
4.
Biochim Biophys Acta ; 1830(5): 3289-303, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23201771

RESUMEN

BACKGROUND: With increasing evidence that hydroperoxides are not only toxic but rather exert essential physiological functions, also hydroperoxide removing enzymes have to be re-viewed. In mammals, the peroxidases inter alia comprise the 8 glutathione peroxidases (GPx1-GPx8) so far identified. SCOPE OF THE REVIEW: Since GPxs have recently been reviewed under various aspects, we here focus on novel findings considering their diverse physiological roles exceeding an antioxidant activity. MAJOR CONCLUSIONS: GPxs are involved in balancing the H2O2 homeostasis in signalling cascades, e.g. in the insulin signalling pathway by GPx1; GPx2 plays a dual role in carcinogenesis depending on the mode of initiation and cancer stage; GPx3 is membrane associated possibly explaining a peroxidatic function despite low plasma concentrations of GSH; GPx4 has novel roles in the regulation of apoptosis and, together with GPx5, in male fertility. Functions of GPx6 are still unknown, and the proposed involvement of GPx7 and GPx8 in protein folding awaits elucidation. GENERAL SIGNIFICANCE: Collectively, selenium-containing GPxs (GPx1-4 and 6) as well as their non-selenium congeners (GPx5, 7 and 8) became key players in important biological contexts far beyond the detoxification of hydroperoxides. This article is part of a Special Issue entitled Cellular functions of glutathione.


Asunto(s)
Glutatión Peroxidasa/metabolismo , Glutatión/metabolismo , Animales , Antioxidantes/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción
5.
Biochim Biophys Acta ; 1830(6): 3846-57, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23454490

RESUMEN

BACKGROUND: Mammalian GPx7 is a monomeric glutathione peroxidase of the endoplasmic reticulum (ER), containing a Cys redox center (CysGPx). Although containing a peroxidatic Cys (CP) it lacks the resolving Cys (CR), that confers fast reactivity with thioredoxin (Trx) or related proteins to most other CysGPxs. METHODS: Reducing substrate specificity and mechanism were addressed by steady-state kinetic analysis of wild type or mutated mouse GPx7. The enzymes were heterologously expressed as a synuclein fusion to overcome limited expression. Phospholipid hydroperoxide was the oxidizing substrate. Enzyme-substrate and protein-protein interaction were analyzed by molecular docking and surface plasmon resonance analysis. RESULTS: Oxidation of the CP is fast (k+1>10(3)M(-1)s(-1)), however the rate of reduction by GSH is slow (k'+2=12.6M(-1)s(-1)) even though molecular docking indicates a strong GSH-GPx7 interaction. Instead, the oxidized CP can be reduced at a fast rate by human protein disulfide isomerase (HsPDI) (k+1>10(3)M(-1)s(-1)), but not by Trx. By surface plasmon resonance analysis, a KD=5.2µM was calculated for PDI-GPx7 complex. Participation of an alternative non-canonical CR in the peroxidatic reaction was ruled out. Specific activity measurements in the presence of physiological reducing substrate concentration, suggest substrate competition in vivo. CONCLUSIONS: GPx7 is an unusual CysGPx catalyzing the peroxidatic cycle by a one Cys mechanism in which GSH and PDI are alternative substrates. GENERAL SIGNIFICANCE: In the ER, the emerging physiological role of GPx7 is oxidation of PDI, modulated by the amount of GSH.


Asunto(s)
Proteínas Portadoras/química , Glutatión/química , Simulación del Acoplamiento Molecular , Peroxidasas/química , Proteína Disulfuro Isomerasas/química , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Catálisis , Glutatión/genética , Glutatión/metabolismo , Glutatión Peroxidasa , Humanos , Ratones , Mutación , Oxidación-Reducción , Peroxidasas/genética , Peroxidasas/metabolismo , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato/genética
6.
Redox Biol ; 64: 102806, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37413766

RESUMEN

The aim of this study was to examine, in biochemical detail, the functional role of the Arg152 residue in the selenoprotein Glutathione Peroxidase 4 (GPX4), whose mutation to His is involved in Sedaghatian-type Spondylometaphyseal Dysplasia (SSMD). Wild-type and mutated recombinant enzymes with selenopcysteine (Sec) at the active site, were purified and structurally characterized to investigate the impact of the R152H mutation on enzymatic function. The mutation did not affect the peroxidase reaction's catalytic mechanism, and the kinetic parameters were qualitatively similar between the wild-type enzyme and the mutant when mixed micelles and monolamellar liposomes containing phosphatidylcholine and its hydroperoxide derivatives were used as substrate. However, in monolamellar liposomes also containing cardiolipin, which binds to a cationic area near the active site of GPX4, including residue R152, the wild-type enzyme showed a non-canonical dependency of the reaction rate on the concentration of both enzyme and membrane cardiolipin. To explain this oddity, a minimal model was developed encompassing the kinetics of both the enzyme interaction with the membrane and the catalytic peroxidase reaction. Computational fitting of experimental activity recordings showed that the wild-type enzyme was surface-sensing and prone to "positive feedback" in the presence of cardiolipin, indicating a positive cooperativity. This feature was minimal, if any, in the mutant. These findings suggest that GPX4 physiology in cardiolipin containing mitochondria is unique, and emerges as a likely target of the pathological dysfunction in SSMD.


Asunto(s)
Cardiolipinas , Liposomas , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Cardiolipinas/metabolismo , Mutación
7.
FASEB J ; 25(7): 2135-44, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21402720

RESUMEN

Selenoproteins are expressed in many organisms, including bacteria, insects, fish, and mammals. Yet, it has remained obscure why some organisms rely on selenoproteins while others, like yeast and plants, express Cys-containing homologues. This study addressed the possible advantage of selenocysteine (Sec) vs. Cys in the essential selenoprotein glutathione peroxidase 4 (GPx4), using 4-hydroxy-tamoxifen-inducible Cre-excision of loxP-flanked GPx4 alleles in murine cells. Previously, it was shown that GPx4 disruption caused rapid cell death, which was prevented by α-tocopherol. Results presented herein demonstrate that the expression of wild-type (WT) GPx4 and its Sec/Cys (U46C) mutant rescued cell death of GPx4(-/-) cells, whereas the Sec/Ser (U46S) mutant failed. Notably, the specific activity of U46C was decreased by ∼90% and was indistinguishable from U46S-expressing and mock-transfected cells. Hence, the U46C mutant prevented apoptosis despite hardly measurable in vitro activity. Doxycycline-inducible expression revealed that minute amounts of either U46C or WT GPx4 prevented cell death, albeit WT GPx4 was more efficient. Interestingly, at the same expression level, proliferation was promoted in U46C-expressing cells but attenuated in WT-expressing cells. In summary, both catalytic efficiency and the expression level of GPx4 control the balance between cell survival and proliferation.


Asunto(s)
Cisteína/genética , Glutatión Peroxidasa/genética , Mutación , Selenoproteínas/genética , Animales , Biocatálisis , Western Blotting , Hipoxia de la Célula , Proliferación Celular , Supervivencia Celular/genética , Células Cultivadas , Cisteína/metabolismo , Doxiciclina/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Tamoxifeno/farmacología
8.
Free Radic Biol Med ; 188: 117-133, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35718302

RESUMEN

The purification of a protein inhibiting lipid peroxidation led to the discovery of the selenoperoxidase GPx4 forty years ago. Thus, the evidence of the enzymatic activity was reached after identifying the biological effect and unambiguously defined the relationship between the biological function and the enzymatic activity. In the syllogism where GPx4 inhibits lipid peroxidation and its inhibition is lethal, cell death is operated by lipid peroxidation. Based on this rationale, this form of cell death emerged as regulated iron-enforced oxygen toxicity and was named ferroptosis in 2012. In the last decades, we learned that reduction of lipid hydroperoxides is indispensable and, in cooperation with prooxidant systems, controls the critical steady state of lipid peroxidation. This concept defined the GPx4 reaction as both the target for possible anti-cancer therapy and if insufficient, as cause of degenerative diseases. We know the reaction mechanism, but the details of the interaction at the membrane cytosol interface are still poorly defined. We know the gene structure, but the knowledge about expression control is still limited. The same holds true for post-transcriptional modifications. Reverse genetics indicate that GPx4 has a role in inflammation, immunity, and differentiation, but the observations emerging from these studies need a more specifically addressed biochemical evidence. Finally, the role of GPx4 in spermatogenesis disclosed an area unconnected to lipid peroxidation. In its mitochondrial and nuclear form, the peroxidase catalyzes the oxidation of protein thiols in two specific aspects of sperm maturation: stabilization of the mid-piece and chromatin compaction. Thus, although available evidence converges to the notion that GPx4 activity is vital due to the inhibition of lipid peroxidation, it is reasonable to foresee other unknown aspects of the GPx4 reaction to be disclosed.


Asunto(s)
Ferroptosis , Semen , Antioxidantes/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Humanos , Peroxidación de Lípido , Peróxidos Lipídicos/metabolismo , Masculino , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Semen/metabolismo
9.
Antioxid Redox Signal ; 35(8): 595-601, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34036804

RESUMEN

Dr. Regina Brigelius-Flohé (PhD 1978) is recognized here as redox pioneer because she has published an article on redox biology, as first author, that has been cited >1000 times, plus four articles cited >500 times, and a total of 30 articles cited >100 times. She obtained her doctorate in biochemistry at the Institute of Biochemistry of the University of Münster, Germany. She held positions in both, academia (Münster, Munich, Düsseldorf, Hannover, and Potsdam, Germany) and industry (Aachen, Germany). Dr. Brigelius-Flohé is the pioneer who, as head of the department of biochemistry of micronutrients of the German Institute of Human Nutrition (DIfE; Potsdam-Rehbrücke, Germany), worked out the metabolism of tocopherols and tocotrienols ("Key Finding 1"). She was the first to sequence glutathione peroxidase 4 (GPx4) ("Key Finding 2"), and unraveled the role of selenium, in particular of GPxs, in inflammation and carcinogenesis ("Key Finding 3"). Her contributions, thus, focused on serious biomedical problems such as nutrition, inflammation, and carcinogenesis. She has been a member of the scientific advisory board of the German Society of Biochemistry and Molecular Biology for 6 years and was president of SFRR-Europe in 2005-2006. She edited several books and serves on the editorial board of journals in the fields of nutrition, free radicals, and redox regulation. Antioxid. Redox Signal. 35, 595-601.


Asunto(s)
Selenio , Bioquímica/historia , Humanos , Oxidación-Reducción , Selenio/metabolismo
10.
Redox Biol ; 46: 102070, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34304108

RESUMEN

Selenoproteins are translated via animal domain-specific elongation machineries that redefine dedicated UGA opal codons from termination of translation to selenocysteine (Sec) insertion, utilizing specific tRNA species and Sec-specific elongation factors. This has made recombinant production of mammalian selenoproteins in E. coli technically challenging but recently we developed a methodology that enables such production, using recoding of UAG for Sec in an RF1-deficient host strain. Here we used that approach for production of the human glutathione peroxidases 1, 2 and 4 (GPX1, GPX2 and GPX4), with all these three enzymes being important antioxidant selenoproteins. Among these, GPX4 is the sole embryonically essential enzyme, and is also known to be essential for spermatogenesis as well as protection from cell death through ferroptosis. Enzyme kinetics, ICP-MS and mass spectrometry analyses of the purified recombinant proteins were used to characterize selenoprotein characteristics and their Sec contents. This revealed a unique phenomenon of one-codon skipping, resulting in a lack of a single amino acid at the position corresponding to the selenocysteine (Sec) residue, in about 30% of the recombinant GPX isoenzyme products. We furthermore confirmed the previously described UAG suppression with Lys or Gln as well as a minor suppression with Tyr, together resulting in about 20% Sec contents in the full-length proteins. No additional frameshifts or translational errors were detected. We subsequently found that Sec-containing GPX4 could be further purified over a bromosulfophthalein-column, yielding purified recombinant GPX4 with close to complete Sec contents. This production method for homogenously purified GPX4 should help to further advance the studies of this important selenoprotein.


Asunto(s)
Escherichia coli , Sulfobromoftaleína , Animales , Codón de Terminación , Escherichia coli/genética , Humanos , Masculino , Selenocisteína , Selenoproteínas/genética
11.
Free Radic Biol Med ; 167: 45-53, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33711415

RESUMEN

Ferroptosis is a non-accidental, regulated form of cell death operated by lipid peroxidation under strict control of GPx4 activity. This is consistent with the notion that lipid peroxidation is initiated by radicals produced from decomposition of traces of pre-existing lipid hydroperoxides. The question, therefore, emerges about the formation of these traces of lipid hydroperoxides interacting with Fe2+. In the most realistic option, they are produced by oxygen activated species generated during aerobic metabolism. Screening for metabolic sources of superoxide supporting ferroptosis induced by GSH depletion, we failed to detect, in our cell model, a role of respiratory chain. We observed instead that the pyruvate dehydrogenase complex -as other α keto acid dehydrogenases already known as a major source of superoxide in mitochondria- supports ferroptosis. The opposite effect on ferroptosis by silencing either the E1 or the E3 subunit of the pyruvate dehydrogenase complex pointed out the autoxidation of dihydrolipoamide as the source of superoxide. We finally observed that GSH depletion activates superoxide production, seemingly through the inhibition of the specific kinase that inhibits pyruvate dehydrogenase. In summary, this set of data is compatible with a scenario where the more electrophilic status produced by GSH depletion not only activates ferroptosis by preventing GPx4 activity, but also favors the formation of lipid hydroperoxides. In an attractive perspective of tissue homeostasis, it is the activation of energetic metabolism associated to a decreased nucleophilic tone that, besides supporting energy demanding proliferation, also sensitizes cells to a regulated form of death.


Asunto(s)
Ferroptosis , Muerte Celular , Peroxidación de Lípido , Peróxidos Lipídicos , Ácido Pirúvico
12.
Biochemistry ; 49(5): 835-42, 2010 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-20050630

RESUMEN

We review signaling by reactive oxygen species, which is emerging as a major physiological process. However, among the reactive oxygen species, H(2)O(2) best fulfills the requirements of being a second messenger. Its enzymatic production and degradation, along with the requirements for the oxidation of thiols by H(2)O(2), provide the specificity for time and place that are required in signaling. Both thermodynamic and kinetic considerations suggest that among possible oxidation states of cysteine, formation of sulfenic acid derivatives or disulfides can be relevant as thiol redox switches in signaling. In this work, the general constraints that are required for protein thiol oxidation by H(2)O(2) to be fast enough to be relevant for signaling are discussed in light of the mechanism of oxidation of the catalytic cysteine or selenocysteine in thiol peroxidases. While the nonenzymatic reaction between thiol and H(2)O(2) is, in most cases, too slow to be relevant in signaling, the enzymatic catalysis of thiol oxidation by these peroxidases provides a potential mechanism for redox signaling.


Asunto(s)
Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Animales , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Cisteína/fisiología , Humanos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Peroxirredoxinas/fisiología , Sistemas de Mensajero Secundario/fisiología
13.
Biochim Biophys Acta ; 1790(11): 1486-500, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19376195

RESUMEN

Kinetics and molecular mechanisms of GPx-type enzymes are reviewed with emphasis on structural features relevant to efficiency and specificity. In Sec-GPxs the reaction takes place at a single redox centre with selenocysteine as redox-active residue (peroxidatic Sec, U(P)). In contrast, most of the non-vertebrate GPx have the U(P) replaced by a cysteine (peroxidatic Cys, C(P)) and work with a second redox centre that contains a resolving cysteine (C(R)). While the former type of enzymes is more or less specific for GSH, the latter are reduced by "redoxins". The common denominator of the GPx family is the first redox centre comprising the (seleno)cysteine, tryptophan, asparagine and glutamine. In this architectural context the rate of hydroperoxide reduction by U(P) or C(P), respectively, is enhanced by several orders of magnitude compared to that of free selenolate or thiolate. Mammalian GPx-1 dominates H(2)O(2) metabolism, whereas the domain of GPx-4 is the reduction of lipid hydroperoxides with important consequences such as counteracting 12/15-lipoxygenase-induced apoptosis and regulation of inflammatory responses. Beyond, the degenerate GSH specificity of GPx-4 allows selenylation and oxidation to disulfides of protein thiols. Heterodimer formation of yeast GPx with a transcription factor is discussed as paradigm of a redox sensing that might also be valid in vertebrates.


Asunto(s)
Glutatión Peroxidasa/metabolismo , Modelos Químicos , Animales , Catálisis , Glutatión Peroxidasa/química , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/fisiología , Humanos , Modelos Biológicos , Modelos Moleculares , Oxidación-Reducción , Filogenia , Especificidad por Sustrato
14.
FASEB J ; 23(9): 3233-42, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19417079

RESUMEN

Selenium is linked to male fertility. Glutathione peroxidase 4 (GPx4), first described as an antioxidant enzyme, is the predominant selenoenzyme in testis and has been suspected of being vital for spermatogenesis. Cytosolic, mitochondrial, and nuclear isoforms are all encoded by the same gene. While disruption of entire GPx4 causes early embryonic lethality in mice, inactivation of nuclear GPx4 does not impair embryonic development or fertility. Here, we show that deletion of mitochondrial GPx4 (mGPx4) allows both normal embryogenesis and postnatal development, but causes male infertility. Infertility was associated with impaired sperm quality and severe structural abnormalities in the midpiece of spermatozoa. Knockout sperm display higher protein thiol content and recapitulate features typical of severe selenodeficiency. Interestingly, male infertility induced by mGPx4 depletion could be bypassed by intracytoplasmic sperm injection. We also show for the first time that mGPx4 is the prevailing GPx4 product in male germ cells and that mGPx4 disruption has no effect on proliferation or apoptosis of germinal or somatic tissue. Our study finally establishes that mitochondrial GPx4 confers the vital role of selenium in mammalian male fertility and identifies cytosolic GPx4 as the only GPx4 isoform being essential for embryonic development and apoptosis regulation.


Asunto(s)
Glutatión Peroxidasa/fisiología , Infertilidad Masculina/etiología , Proteínas Mitocondriales/fisiología , Animales , Apoptosis , Desarrollo Embrionario , Glutatión Peroxidasa/deficiencia , Masculino , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Selenio/fisiología , Espermatozoides/patología
15.
Free Radic Biol Med ; 152: 175-185, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32165281

RESUMEN

Ferroptosis (FPT) is a form of cell death due to missed control of membrane lipid peroxidation (LPO). According to the axiomatic definition of non-accidental cell death, LPO takes place in a scenario of altered homeostasis. FPT, differently from apoptosis, occurs in the absence of any known specific genetically encoded death pathway or specific agonist, and thus must be rated as a regulated, although not "programmed", death pathway. It follows that LPO is under a homeostatic metabolic control and is only permitted when indispensable constraints are satisfied and the antiperoxidant machinery collapses. The activity of the selenoperoxidase Glutathione Peroxidase 4 (GPx4) is the cornerstone of the antiperoxidant defence. Converging evidence on both mechanism of LPO and GPx4 enzymology indicates that LPO is initiated by alkoxyl radicals produced by ferrous iron from the hydroperoxide derivatives of lipids (LOOH), traces of which are the unavoidable drawback of aerobic metabolism. FPT takes place when a threshold has been exceeded. This occurs when the major conditions are satisfied: i) oxygen metabolism leading to the continuous formation of traces of LOOH from phospholipid-containing polyunsaturated fatty acids; ii) missed enzymatic reduction of LOOH; iii) availability of ferrous iron from the labile iron pool. Although the effectors impacting on homeostasis and leading to FPT in physiological conditions are not known, from the available knowledge on LPO and GPx4 enzymology we propose that it is aerobic life itself that, while supporting bioenergetics, is also a critical requisite of FPT. Yet, when the homeostatic control of the steady state between LOOH formation and reduction is lost, LPO is activated and FPT is executed.


Asunto(s)
Ferroptosis , Apoptosis , Muerte Celular , Peroxidación de Lípido , Fosfolípido Hidroperóxido Glutatión Peroxidasa
16.
FEBS Lett ; 594(4): 611-624, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31581313

RESUMEN

Ras-selective lethal small molecule 3 (RSL3), a drug candidate prototype for cancer chemotherapy, triggers ferroptosis by inactivating the glutathione peroxidase glutathione peroxidase 4 (GPx4). Here, we report the purification of the protein indispensable for GPx4 inactivation by RSL3. Mass spectrometric analysis identified 14-3-3 isoforms as candidates, and recombinant human 14-3-3ε confirms the identification. The function of 14-3-3ε is redox-regulated. Moreover, overexpression or silencing of the gene coding for 14-3-3ε consistently controls the inactivation of GPx4 by RSL3. The interaction of GPx4 with a redox-regulated adaptor protein operating in cell signaling further contributes to frame it within redox-regulated pathways of cell survival and death and opens new therapeutic perspectives.


Asunto(s)
Proteínas 14-3-3/metabolismo , Carbolinas/farmacología , Ferroptosis/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Animales , Citosol/efectos de los fármacos , Citosol/metabolismo , Activación Enzimática/efectos de los fármacos , Células HEK293 , Humanos , Ratas
17.
Redox Biol ; 28: 101328, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31574461

RESUMEN

Ferroptosis is a form of cell death primed by iron and lipid hydroperoxides and prevented by GPx4. Ferrostatin-1 (fer-1) inhibits ferroptosis much more efficiently than phenolic antioxidants. Previous studies on the antioxidant efficiency of fer-1 adopted kinetic tests where a diazo compound generates the hydroperoxyl radical scavenged by the antioxidant. However, this reaction, accounting for a chain breaking effect, is only minimally useful for the description of the inhibition of ferrous iron and lipid hydroperoxide dependent peroxidation. Scavenging lipid hydroperoxyl radicals, indeed, generates lipid hydroperoxides from which ferrous iron initiates a new peroxidative chain reaction. We show that when fer-1 inhibits peroxidation, initiated by iron and traces of lipid hydroperoxides in liposomes, the pattern of oxidized species produced from traces of pre-existing hydroperoxides is practically identical to that observed following exhaustive peroxidation in the absence of the antioxidant. This supported the notion that the anti-ferroptotic activity of fer-1 is actually due to the scavenging of initiating alkoxyl radicals produced, together with other rearrangement products, by ferrous iron from lipid hydroperoxides. Notably, fer-1 is not consumed while inhibiting iron dependent lipid peroxidation. The emerging concept is that it is ferrous iron itself that reduces fer-1 radical. This was supported by electroanalytical evidence that fer-1 forms a complex with iron and further confirmed in cells by fluorescence of calcein, indicating a decrease of labile iron in the presence of fer-1. The notion of such as pseudo-catalytic cycle of the ferrostatin-iron complex was also investigated by means of quantum mechanics calculations, which confirmed the reduction of an alkoxyl radical model by fer-1 and the reduction of fer-1 radical by ferrous iron. In summary, GPx4 and fer-1 in the presence of ferrous iron, produces, by distinct mechanism, the most relevant anti-ferroptotic effect, i.e the disappearance of initiating lipid hydroperoxides.


Asunto(s)
Ciclohexilaminas/farmacología , Ferroptosis/efectos de los fármacos , Fenilendiaminas/farmacología , Antioxidantes/farmacología , Muerte Celular/efectos de los fármacos , Cromatografía Liquida , Ciclohexilaminas/química , Teoría Funcional de la Densidad , Relación Dosis-Respuesta a Droga , Ferroptosis/genética , Hidrógeno/química , Peroxidación de Lípido/efectos de los fármacos , Peróxidos Lipídicos/metabolismo , Lipidómica/métodos , Lípidos/química , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Fenilendiaminas/química , Espectrometría de Masas en Tándem
18.
Free Radic Biol Med ; 147: 80-89, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31857233

RESUMEN

GPx8 is a glutathione peroxidase homolog inserted in the membranes of endoplasmic reticulum (ER), where it seemingly plays a role in controlling redox status by preventing the spill of H2O2. We addressed the impact of GPx8 silencing on the lipidome of microsomal membranes, using stably GPx8-silenced HeLa cells. The two cell lines were clearly separated by Principal Component Analysis (PCA) and Partial Least Square Discriminant analysis (PLS-DA) of lipidome. Considering in detail the individual lipid classes, we observed that unsaturated glycerophospholipids (GPL) decreased, while only in phosphatidylinositols (PI) a substitution of monounsaturated fatty acids (MUFA) for polyunsaturated fatty acids (PUFA) was observed. Among sphingolipids (SL), ceramides (CER) decreased while sphingomyelins (SM) and neutral glycophingolipids (nGSL) increased. Here, in addition, longer chains than in controls in the amide fatty acid were present. The increase up to four folds of the CER (d18:1; c24:0) containing three hexose units, was the most remarkable species increasing in the differential lipidome of siGPx8 cells. Quantitative RT-PCR complied with lipidomic analysis specifically showing an increased expression of: i) acyl-CoA synthetase 5 (ACSL5); ii) CER synthase 2 and 4; iii) CER transporter (CERT); iv) UDP-glucosyl transferase (UDP-GlcT), associated to a decreased expression of UDP-galactosyl transferase (UDP-GalT). A role of the unfolded protein response (UPR) and the spliced form of the transcription factor XBP1 on the transcriptional changes of GPx8 silenced cells was ruled-out. Similarly, also the involvement of Nrf2 and NF-κB. Altogether our results indicate that GPx8-silencing of HeLa yields a membrane depleted by about 24% of polyunsaturated GPL and a corresponding increase of saturated or monounsaturated SM and specific nGSL. This is tentatively interpreted as an adaptive mechanism leading to an increased resistance to radical oxidations. Moreover, the marked shift of fatty acid composition of PI emerges as a possibly relevant issue in respect to the impact of GPx8 on signaling pathways.


Asunto(s)
Retículo Endoplásmico , Peróxido de Hidrógeno , Ceramidas , Glutatión Peroxidasa/genética , Células HeLa , Humanos , Peroxidasas
19.
J Mol Biol ; 365(4): 1033-46, 2007 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-17098255

RESUMEN

Some members of the glutathione peroxidase (GPx) family have been reported to accept thioredoxin as reducing substrate. However, the selenocysteine-containing ones oxidise thioredoxin (Trx), if at all, at extremely slow rates. In contrast, the Cys homolog of Drosophila melanogaster exhibits a clear preference for Trx, the net forward rate constant, k'(+2), for reduction by Trx being 1.5x10(6) M(-1) s(-1), but only 5.4 M(-1) s(-1) for glutathione. Like other CysGPxs with thioredoxin peroxidase activity, Drosophila melanogaster (Dm)GPx oxidized by H(2)O(2) contained an intra-molecular disulfide bridge between the active-site cysteine (C45; C(P)) and C91. Site-directed mutagenesis of C91 in DmGPx abrogated Trx peroxidase activity, but increased the rate constant for glutathione by two orders of magnitude. In contrast, a replacement of C74 by Ser or Ala only marginally affected activity and specificity of DmGPx. Furthermore, LC-MS/MS analysis of oxidized DmGPx exposed to a reduced Trx C35S mutant yielded a dead-end intermediate containing a disulfide between Trx C32 and DmGPx C91. Thus, the catalytic mechanism of DmGPx, unlike that of selenocysteine (Sec)GPxs, involves formation of an internal disulfide that is pivotal to the interaction with Trx. Hereby C91, like the analogous second cysteine in 2-cysteine peroxiredoxins, adopts the role of a "resolving" cysteine (C(R)). Molecular modeling and homology considerations based on 450 GPxs suggest peculiar features to determine Trx specificity: (i) a non-aligned second Cys within the fourth helix that acts as C(R); (ii) deletions of the subunit interfaces typical of tetrameric GPxs leading to flexibility of the C(R)-containing loop. Based of these characteristics, most of the non-mammalian CysGPxs, in functional terms, are thioredoxin peroxidases.


Asunto(s)
Glutatión Peroxidasa/química , Tiorredoxinas/química , Secuencia de Aminoácidos , Animales , Dimerización , Disulfuros/química , Drosophila melanogaster , Cinética , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Peroxidasas/química , Peroxirredoxinas , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
20.
J Chromatogr B Analyt Technol Biomed Life Sci ; 865(1-2): 63-73, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18329347

RESUMEN

The effect of 100 nM sodium selenite supplementation was studied on LNCaP cells by a proteomic approach, on ProteomeLab PF 2D platform. Proteins were separated by liquid phase bi-dimensional chromatography and analyzed by pair-wise alignment of peaks to detect those differentially expressed. Differential expression threshold was set at a twice difference level and proteins matching this criterion were identified by MALDI-TOF and confirmed by ESI-ion trap MS/MS. Not all differentially expressed proteins found by PF 2D could be identified by MS analysis, the sensitivity of which emerging as the limiting factor. Thus, only the most abundant proteins, differently expressed following selenium supplementation, were identified. We positively showed an increase of expression of thioredoxin reductase 1, enolase 1, phosphoglycerate mutase 1, glyceraldehyde-3-phosphate dehydrogenase, heterogeneous nuclear ribonucleoprotein A2/B1, isoform A2, Ras-GTPase-activating protein SH3-domain-binding protein and Keratin 18 and a decrease of expression of peroxiredoxin 1 and heat shock protein 70, protein 8, isoform 1. Results are consistent, at least in part, with the less oxidant environment brought about by the synthesis of Se-dependent peroxidases, keeping low the steady-state concentration of hydrogen peroxide.


Asunto(s)
Proteómica , Selenio/administración & dosificación , Línea Celular , Cromatografía Liquida/métodos , Humanos , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA