Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(48): e2215541119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36409882

RESUMEN

Juvenile hormones (JHs) control insect metamorphosis and reproduction. JHs act through a receptor complex consisting of methoprene-tolerant (Met) and taiman (Tai) proteins to induce transcription of specific genes. Among chemically diverse synthetic JH mimics (juvenoids), some of which serve as insecticides, unique peptidic juvenoids stand out as being highly potent yet exquisitely selective to a specific family of true bugs. Their mode of action is unknown. Here we demonstrate that, like established JH receptor agonists, peptidic juvenoids act upon the JHR Met to halt metamorphosis in larvae of the linden bug, Pyrrhocoris apterus. Peptidic juvenoids induced ligand-dependent dimerization between Met and Tai proteins from P. apterus but, consistent with their selectivity, not from other insects. A cell-based split-luciferase system revealed that the Met-Tai complex assembled within minutes of agonist presence. To explore the potential of juvenoid peptides, we synthesized 120 new derivatives and tested them in Met-Tai interaction assays. While many substituents led to loss of activity, improved derivatives active at sub-nanomolar range outperformed hitherto existing peptidic and classical juvenoids including fenoxycarb. Their potency in inducing Met-Tai interaction corresponded with the capacity to block metamorphosis in P. apterus larvae and to stimulate oogenesis in reproductively arrested adult females. Molecular modeling demonstrated that the high potency correlates with high affinity. This is a result of malleability of the ligand-binding pocket of P. apterus Met that allows larger peptidic ligands to maximize their contact surface. Our data establish peptidic juvenoids as highly potent and species-selective novel JHR agonists.


Asunto(s)
Hormonas Juveniles , Metopreno , Animales , Femenino , Hormonas Juveniles/metabolismo , Ligandos , Metopreno/metabolismo , Insectos/metabolismo , Reproducción , Larva , Péptidos/farmacología
2.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902164

RESUMEN

Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family of enzymes due to its complex domain organization and cytosolic localization. Experimental data point toward the therapeutic use of HDAC6-selective inhibitors (HDAC6is) for use in both neurological and psychiatric disorders. In this article, we provide side-by-side comparisons of hydroxamate-based HDAC6is frequently used in the field and a novel HDAC6 inhibitor containing the difluoromethyl-1,3,4-oxadiazole function as an alternative zinc-binding group (compound 7). In vitro isotype selectivity screening uncovered HDAC10 as a primary off-target for the hydroxamate-based HDAC6is, while compound 7 features exquisite 10,000-fold selectivity over all other HDAC isoforms. Complementary cell-based assays using tubulin acetylation as a surrogate readout revealed approximately 100-fold lower apparent potency for all compounds. Finally, the limited selectivity of a number of these HDAC6is is shown to be linked to cytotoxicity in RPMI-8226 cells. Our results clearly show that off-target effects of HDAC6is must be considered before attributing observed physiological readouts solely to HDAC6 inhibition. Moreover, given their unparalleled specificity, the oxadiazole-based inhibitors would best be employed either as research tools in further probing HDAC6 biology or as leads in the development of truly HDAC6-specific compounds in the treatment of human disease states.


Asunto(s)
Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Ácidos Hidroxámicos , Oxadiazoles , Humanos , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Procesamiento Proteico-Postraduccional , Acetilación , Oxadiazoles/química , Oxadiazoles/farmacología , Línea Celular Tumoral
3.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34299354

RESUMEN

The part of the influenza polymerase PA subunit featuring endonuclease activity is a target for anti-influenza therapies, including the FDA-approved drug Xofluza. A general feature of endonuclease inhibitors is their ability to chelate Mg2+ or Mn2+ ions located in the enzyme's catalytic site. Previously, we screened a panel of flavonoids for PA inhibition and found luteolin and its C-glucoside orientin to be potent inhibitors. Through structural analysis, we identified the presence of a 3',4'-dihydroxyphenyl moiety as a crucial feature for sub-micromolar inhibitory activity. Here, we report results from a subsequent investigation exploring structural changes at the C-7 and C-8 positions of luteolin. Experimental IC50 values were determined by AlphaScreen technology. The most potent inhibitors were C-8 derivatives with inhibitory potencies comparable to that of luteolin. Bio-isosteric replacement of the C-7 hydroxyl moiety of luteolin led to a series of compounds with one-order-of-magnitude-lower inhibitory potencies. Using X-ray crystallography, we solved structures of the wild-type PA-N-terminal domain and its I38T mutant in complex with orientin at 1.9 Å and 2.2 Å resolution, respectively.


Asunto(s)
Endonucleasas/antagonistas & inhibidores , Luteolina/síntesis química , Luteolina/farmacología , Orthomyxoviridae/efectos de los fármacos , Antivirales/síntesis química , Antivirales/farmacología , Dominio Catalítico/efectos de los fármacos , Proteínas Virales/antagonistas & inhibidores
4.
FASEB J ; 33(3): 4035-4045, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30496698

RESUMEN

Histone deacetylase 6 (HDAC6) is a multidomain cytosolic hydrolase acting mostly on nonhistone protein substrates. Investigations of the substrate specificity of HDAC6 are confounded by the presence of 2 catalytically active deacetylase domains (DD1 and DD2). In this study, acetylome peptide microarrays and peptide libraries were used to map the substrate specificity of DD1 and DD2 of human HDAC6. The results show that DD1 is solely responsible for the deacetylation of substrates harboring the acetyllysine at their C terminus, whereas DD2 exclusively deacetylates peptides with an internal acetyllysine residue. Also, statistical analysis of the deacetylation data revealed amino acid preferences at individual positions flanking the acetyllysine, where glycine and arginine residues are favored at positions N-terminal to the central acetyllysine; negatively charged glutamate is strongly disfavored throughout the sequence. Finally, the deacylation activity of HDAC6 was profiled by using a panel of acyl derivatives of the optimized peptide substrate and showed that HDAC6 acts as a proficient deformylase. Our data thus offer a detailed insight into the substrate preferences of the individual HDAC6 domains at the peptide level, and these findings can in turn help in elucidating the biologic roles of the enzyme and facilitate the development of new domain-specific inhibitors as research tools or therapeutic agents.-Kutil, Z., Skultetyova, L., Rauh, D., Meleshin, M., Snajdr, I., Novakova, Z., Mikesova, J., Pavlicek, J., Hadzima, M., Baranova, P., Havlinova, B., Majer, P., Schutkowski, M., Barinka, C. The unraveling of substrate specificity of histone deacetylase 6 domains using acetylome peptide microarrays and peptide libraries.


Asunto(s)
Dominio Catalítico , Histona Desacetilasa 6/química , Células HEK293 , Histona Desacetilasa 6/metabolismo , Humanos , Lisina/química , Lisina/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Electricidad Estática , Especificidad por Sustrato
5.
Int J Mol Sci ; 21(12)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560560

RESUMEN

Molecular determinants of the binding of various endogenous modulators to transient receptor potential (TRP) channels are crucial for the understanding of necessary cellular pathways, as well as new paths for rational drug designs. The aim of this study was to characterise interactions between the TRP cation channel subfamily melastatin member 4 (TRPM4) and endogenous intracellular modulators-calcium-binding proteins (calmodulin (CaM) and S100A1) and phosphatidylinositol 4, 5-bisphosphate (PIP2). We have found binding epitopes at the N- and C-termini of TRPM4 shared by CaM, S100A1 and PIP2. The binding affinities of short peptides representing the binding epitopes of N- and C-termini were measured by means of fluorescence anisotropy (FA). The importance of representative basic amino acids and their combinations from both peptides for the binding of endogenous TRPM4 modulators was proved using point alanine-scanning mutagenesis. In silico protein-protein docking of both peptides to CaM and S100A1 and extensive molecular dynamics (MD) simulations enabled the description of key stabilising interactions at the atomic level. Recently solved cryo-Electron Microscopy (EM) structures made it possible to put our findings into the context of the entire TRPM4 channel and to deduce how the binding of these endogenous modulators could allosterically affect the gating of TRPM4. Moreover, both identified binding epitopes seem to be ideally positioned to mediate the involvement of TRPM4 in higher-order hetero-multimeric complexes with important physiological functions.


Asunto(s)
Acuaporinas/metabolismo , Sitios de Unión , Calmodulina/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas S100/metabolismo , Canales Catiónicos TRPM/metabolismo , Secuencia de Aminoácidos , Acuaporinas/química , Calmodulina/química , Humanos , Cinética , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Fragmentos de Péptidos , Unión Proteica , Conformación Proteica , Proteínas S100/química , Relación Estructura-Actividad , Canales Catiónicos TRPM/química
6.
Mol Pharm ; 16(10): 4292-4301, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31503493

RESUMEN

2-(Phosphonomethyl)-pentanedioic acid (2-PMPA) is a potent (IC50 = 300 pM) and selective inhibitor of glutamate carboxypeptidase II (GCPII) with efficacy in multiple neurological and psychiatric disease preclinical models and more recently in models of inflammatory bowel disease (IBD) and cancer. 2-PMPA (1), however, has not been clinically developed due to its poor oral bioavailability (<1%) imparted by its four acidic functionalities (c Log P = -1.14). In an attempt to improve the oral bioavailability of 2-PMPA, we explored a prodrug approach using (5-methyl-2-oxo-1,3-dioxol-4-yl)methyl (ODOL), an FDA-approved promoiety, and systematically masked two (2), three (3), or all four (4) of its acidic groups. The prodrugs were evaluated for in vitro stability and in vivo pharmacokinetics in mice and dog. Prodrugs 2, 3, and 4 were found to be moderately stable at pH 7.4 in phosphate-buffered saline (57, 63, and 54% remaining at 1 h, respectively), but rapidly hydrolyzed in plasma and liver microsomes, across species. In vivo, in a single time-point screening study in mice, 10 mg/kg 2-PMPA equivalent doses of 2, 3, and 4 delivered significantly higher 2-PMPA plasma concentrations (3.65 ± 0.37, 3.56 ± 0.46, and 17.3 ± 5.03 nmol/mL, respectively) versus 2-PMPA (0.25 ± 0.02 nmol/mL). Given that prodrug 4 delivered the highest 2-PMPA levels, we next evaluated it in an extended time-course pharmacokinetic study in mice. 4 demonstrated an 80-fold enhancement in exposure versus oral 2-PMPA (AUC0-t: 52.1 ± 5.9 versus 0.65 ± 0.13 h*nmol/mL) with a calculated absolute oral bioavailability of 50%. In mouse brain, 4 showed similar exposures to that achieved with the IV route (1.2 ± 0.2 versus 1.6 ± 0.2 h*nmol/g). Further, in dogs, relative to orally administered 2-PMPA, 4 delivered a 44-fold enhanced 2-PMPA plasma exposure (AUC0-t for 4: 62.6 h*nmol/mL versus AUC0-t for 2-PMPA: 1.44 h*nmol/mL). These results suggest that ODOL promoieties can serve as a promising strategy for enhancing the oral bioavailability of multiply charged compounds, such as 2-PMPA, and enable its clinical translation.


Asunto(s)
Microsomas Hepáticos/metabolismo , Compuestos Organofosforados/metabolismo , Profármacos/metabolismo , Administración Oral , Animales , Disponibilidad Biológica , Perros , Masculino , Ratones , Compuestos Organofosforados/administración & dosificación , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacocinética , Profármacos/administración & dosificación , Profármacos/química , Profármacos/farmacocinética , Distribución Tisular
7.
Bioorg Med Chem ; 27(13): 2935-2947, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31128993

RESUMEN

This study focuses on design, synthesis and in vitro evaluation of inhibitory potency of two series of sialylmimetic that target an exosite ("150-cavity") adjacent to the active site of influenza neuraminidases from A/California/07/2009 (H1N1) pandemic strain and A/chicken/Nakorn-Patom/Thailand/CU-K2-2004 (H5N1). The structure-activity analysis as well as 3-D structure of the complex of parental compound with the pandemic neuraminidase p09N1 revealed high flexibility of the 150-cavity towards various modification of the neuraminidase inhibitors. Furthermore, our comparison of two methods for inhibition constant determination performed at slightly different pH values suggest that the experimental conditions of the measurement could dramatically influence the outcome of the analysis in the compound-dependent manner. Therefore, previously reported Ki values determined at non-physiological pH should be carefully scrutinized.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Neuraminidasa/uso terapéutico , Oseltamivir/uso terapéutico , Humanos , Neuraminidasa/farmacología , Oseltamivir/farmacología
8.
Nucleic Acids Res ; 45(2): e10, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-27679479

RESUMEN

Human diseases are often diagnosed by determining levels of relevant enzymes and treated by enzyme inhibitors. We describe an assay suitable for both ultrasensitive enzyme quantification and quantitative inhibitor screening with unpurified enzymes. In the DNA-linked Inhibitor ANtibody Assay (DIANA), the target enzyme is captured by an immobilized antibody, probed with a small-molecule inhibitor attached to a reporter DNA and detected by quantitative PCR. We validate the approach using the putative cancer markers prostate-specific membrane antigen and carbonic anhydrase IX. We show that DIANA has a linear range of up to six logs and it selectively detects zeptomoles of targets in complex biological samples. DIANA's wide dynamic range permits determination of target enzyme inhibition constants using a single inhibitor concentration. DIANA also enables quantitative screening of small-molecule enzyme inhibitors using microliters of human blood serum containing picograms of target enzyme. DIANA's performance characteristics make it a superior tool for disease detection and drug discovery.


Asunto(s)
Bioensayo , ADN , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Enzimas/metabolismo , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
J Biol Chem ; 292(7): 2703-2713, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28069810

RESUMEN

Rhomboid proteases are increasingly being explored as potential drug targets, but their potent and specific inhibitors are not available, and strategies for inhibitor development are hampered by the lack of widely usable and easily modifiable in vitro activity assays. Here we address this bottleneck and report on the development of new fluorogenic transmembrane peptide substrates, which are cleaved by several unrelated rhomboid proteases, can be used both in detergent micelles and in liposomes, and contain red-shifted fluorophores that are suitable for high-throughput screening of compound libraries. We show that nearly the entire transmembrane domain of the substrate is important for efficient cleavage, implying that it extensively interacts with the enzyme. Importantly, we demonstrate that in the detergent micelle system, commonly used for the enzymatic analyses of intramembrane proteolysis, the cleavage rate strongly depends on detergent concentration, because the reaction proceeds only in the micelles. Furthermore, we show that the catalytic efficiency and selectivity toward a rhomboid substrate can be dramatically improved by targeted modification of the sequence of its P5 to P1 region. The fluorogenic substrates that we describe and their sequence variants should find wide use in the detection of activity and development of inhibitors of rhomboid proteases.


Asunto(s)
Colorantes Fluorescentes/química , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Cinética , Liposomas , Especificidad por Sustrato
10.
EMBO J ; 33(20): 2408-21, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25216680

RESUMEN

The mechanisms of intramembrane proteases are incompletely understood due to the lack of structural data on substrate complexes. To gain insight into substrate binding by rhomboid proteases, we have synthesised a series of novel peptidyl-chloromethylketone (CMK) inhibitors and analysed their interactions with Escherichia coli rhomboid GlpG enzymologically and structurally. We show that peptidyl-CMKs derived from the natural rhomboid substrate TatA from bacterium Providencia stuartii bind GlpG in a substrate-like manner, and their co-crystal structures with GlpG reveal the S1 to S4 subsites of the protease. The S1 subsite is prominent and merges into the 'water retention site', suggesting intimate interplay between substrate binding, specificity and catalysis. Unexpectedly, the S4 subsite is plastically formed by residues of the L1 loop, an important but hitherto enigmatic feature of the rhomboid fold. We propose that the homologous region of members of the wider rhomboid-like protein superfamily may have similar substrate or client-protein binding function. Finally, using molecular dynamics, we generate a model of the Michaelis complex of the substrate bound in the active site of GlpG.


Asunto(s)
Clorometilcetonas de Aminoácidos/farmacología , Proteínas de Unión al ADN/química , Endopeptidasas/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Proteínas de la Membrana/química , Modelos Moleculares , Simulación de Dinámica Molecular , Providencia/química , Clorometilcetonas de Aminoácidos/síntesis química , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Unión Proteica , Proteínas Recombinantes , Especificidad por Sustrato
11.
PLoS Pathog ; 12(12): e1006051, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27977806

RESUMEN

The opportunistic fungal pathogen Cryptococcus neoformans is a major cause of mortality in immunocompromised individuals, resulting in more than 600,000 deaths per year. Many human fungal pathogens secrete peptidases that influence virulence, but in most cases the substrate specificity and regulation of these enzymes remains poorly understood. The paucity of such information is a roadblock to our understanding of the biological functions of peptidases and whether or not these enzymes are viable therapeutic targets. We report here an unbiased analysis of secreted peptidase activity and specificity in C. neoformans using a mass spectrometry-based substrate profiling strategy and subsequent functional investigations. Our initial studies revealed that global peptidase activity and specificity are dramatically altered by environmental conditions. To uncover the substrate preferences of individual enzymes and interrogate their biological functions, we constructed and profiled a ten-member gene deletion collection of candidate secreted peptidases. Through this deletion approach, we characterized the substrate specificity of three peptidases within the context of the C. neoformans secretome, including an enzyme known to be important for fungal entry into the brain. We selected a previously uncharacterized peptidase, which we term Major aspartyl peptidase 1 (May1), for detailed study due to its substantial contribution to extracellular proteolytic activity. Based on the preference of May1 for proteolysis between hydrophobic amino acids, we screened a focused library of aspartyl peptidase inhibitors and identified four high-affinity antagonists. Finally, we tested may1Δ strains in a mouse model of C. neoformans infection and found that strains lacking this enzyme are significantly attenuated for virulence. Our study reveals the secreted peptidase activity and specificity of an important human fungal pathogen, identifies responsible enzymes through genetic tests of their function, and demonstrates how this information can guide the development of high affinity small molecule inhibitors.


Asunto(s)
Proteasas de Ácido Aspártico/metabolismo , Criptococosis/enzimología , Cryptococcus neoformans/patogenicidad , Proteínas Fúngicas/metabolismo , Animales , Cryptococcus neoformans/enzimología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Concentración de Iones de Hidrógeno , Immunoblotting , Espectrometría de Masas , Ratones , Péptido Hidrolasas/metabolismo , Proteómica , Reacción en Cadena en Tiempo Real de la Polimerasa , Virulencia , Factores de Virulencia/metabolismo
12.
Chemphyschem ; 19(7): 873-879, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29316128

RESUMEN

Accurate prediction of protein-ligand binding affinities is essential for hit-to-lead optimization and virtual screening. The reliability of scoring functions can be improved by including quantum effects. Here, we demonstrate the ranking power of the semiempirical quantum mechanics (SQM)/implicit solvent (COSMO) scoring function by using a challenging set of 10 inhibitors binding to carbonic anhydrase II through Zn2+ in the active site. This new dataset consists of the high-resolution (1.1-1.4 Å) crystal structures and experimentally determined inhibitory constant (Ki ) values. It allows for evaluation of the common approximations, such as representing the solvent implicitly or by using a single target conformation combined with a set of ligand docking poses. SQM/COSMO attained a good correlation of R2 of 0.56-0.77 with the experimental inhibitory activities, benefiting from careful handling of both noncovalent interactions (e.g. charge transfer) and solvation. This proof-of-concept study of SQM/COSMO ranking for metalloprotein-ligand systems demonstrates its potential for hit-to-lead applications.


Asunto(s)
Anhidrasa Carbónica II/metabolismo , Inhibidores de Anhidrasa Carbónica/metabolismo , Sulfonamidas/metabolismo , Anhidrasa Carbónica II/química , Inhibidores de Anhidrasa Carbónica/química , Diseño de Fármacos , Ligandos , Modelos Químicos , Simulación del Acoplamiento Molecular , Unión Proteica , Teoría Cuántica , Sulfonamidas/química
13.
J Nat Prod ; 81(10): 2266-2274, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30299957

RESUMEN

The queens of social insects differ from sterile colony members in many aspects of their physiology. Besides adaptations linked with their specialization for reproduction and extended lifespan, the queens also invest in the maintenance of their reproductive dominance by producing exocrine chemicals signaling their presence to the nestmates. The knowledge of the chemistry of queen-specific cues in termites is scarce. In addition to the contact recognition based on cuticular hydrocarbons, long-range signals mediated by volatiles are expected to participate in queen signaling, especially in populous colonies of higher termites (Termitidae). In queens of the higher termite Silvestritermes minutus (Syntermitinae), we have detected a previously undescribed volatile. It is present in important quantities on the body surface and in the headspace, ovaries, and body cavity. MS and GC-FTIR data analyses led us to propose the structure of the compound to be a macrolide 10-pentyl-3,4,5,8,9,10-hexahydro-2 H-oxecin-2-one. We performed enantiodivergent syntheses of two possible enantiomers starting from enantiopure ( S)-glycidyl tosylate. The synthetic sequence involved macrolide-closing metathesis quenched with a ruthenium scavenging agent. The absolute and relative configuration of the compound was assigned to be (5 Z,9 S)-tetradec-5-en-9-olide. Identification and preparation of the compound allow for investigation of its biological significance.


Asunto(s)
Isópteros/química , Macrólidos/síntesis química , Animales , Femenino , Indicadores y Reactivos , Macrólidos/química , Macrólidos/farmacología , Espectrometría de Masas , Estructura Molecular , Ovario/química , Espectroscopía Infrarroja por Transformada de Fourier , Estereoisomerismo
14.
Mol Pharm ; 14(10): 3248-3257, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28763226

RESUMEN

2-(Phosphonomethyl)pentanedioic acid (2-PMPA) is a potent and selective inhibitor of glutamate carboxypeptidase-II (GCPII) with efficacy in multiple neurological and psychiatric disease models, but its clinical utility is hampered by low brain penetration due to the inclusion of multiple acidic functionalities. We recently reported an improvement in the brain-to-plasma ratio of 2-PMPA after intranasal (IN) dosing in both rodents and primates. Herein, we describe the synthesis of several 2-PMPA prodrugs with further improved brain delivery of 2-PMPA after IN administration by masking of the γ-carboxylate. When compared to IN 2-PMPA in rats at 1 h post dose, γ-(4-acetoxybenzyl)-2-PMPA (compound 1) resulted in significantly higher 2-PMPA delivery to both plasma (4.1-fold) and brain (11-fold). Subsequent time-dependent evaluation of 1 also showed high brain as well as plasma 2-PMPA exposures with brain-to-plasma ratios of 2.2, 0.48, and 0.26 for olfactory bulb, cortex, and cerebellum, respectively, as well as an improved sciatic nerve to plasma ratio of 0.84. In contrast, IV administration of compound 1 resulted in similar plasma exposure of 2-PMPA versus the IN route (AUCIV: 76 ± 9 h·nmol/mL versus AUCIN: 99 ± 24 h·nmol/mL); but significantly lower nerve and brain tissue exposures with tissue-to-plasma ratios of 0.21, 0.03, 0.04, and 0.04 in nerve, olfactory bulb, cortex, and cerebellum, respectively. In primates, IN administration of 1 more than doubled 2-PMPA concentrations in the cerebrospinal fluid relative to previously reported levels following IN 2-PMPA. The results of these experiments provide a promising strategy for testing GCPII inhibition in neurological and psychiatric disorders.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Compuestos Organofosforados/farmacología , Administración Intranasal , Administración Intravenosa , Animales , Líquido Cefalorraquídeo/efectos de los fármacos , Ésteres/análisis , Ésteres/química , Ésteres/farmacología , Macaca mulatta , Masculino , Fármacos Neuroprotectores/análisis , Fármacos Neuroprotectores/química , Compuestos Organofosforados/análisis , Compuestos Organofosforados/química , Profármacos/análisis , Profármacos/química , Profármacos/farmacología , Ratas , Ratas Wistar , Distribución Tisular
15.
J Chem Ecol ; 42(10): 1070-1081, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27639394

RESUMEN

Termite nests often are referred to as the most elaborate constructions of animals. However, some termite species do not build a nest at all and instead found colonies inside the nests of other termites. Since these so-called inquilines do not need to be in direct contact with the host population, the two colonies usually live in separate parts of the nest. Adaptations of both the inquiline and its host are likely to occur to maintain the spatial exclusion and reduce the costs of potential conflicts. Among them, mutual avoidance, based on chemical cues, is expected. We investigated chemical aspects of cohabitation between Constrictotermes cavifrons (Nasutitermitinae) and its obligatory inquiline Inquilinitermes inquilinus (Termitinae). Inquiline soldiers produce in their frontal glands a blend of wax esters, consisting of the C12 alcohols (3Z)-dodec enol, (3Z,6Z)-dodecadienol, and dodecanol, esterified with different fatty acids. The C12 alcohols appear to be cleaved gradually from the wax esters, and they occur in the frontal gland, in soldier headspace, and in the walls of the inquiline part of the nest. Electrophysiological experiments revealed that (3Z)-dodecenol and (3Z,6Z)-dodecadienol are perceived by workers of both species. Bioassays indicated that inquiline soldier heads, as well as the two synthetic compounds, are attractive to conspecific workers and elicit an arresting behavior, while host soldiers and workers avoid these chemicals at biologically relevant amounts. These observations support the hypothesis that chemically mediated spatial separation of the host and the inquiline is an element of a conflict-avoidance strategy in these species.


Asunto(s)
Isópteros/fisiología , Comportamiento de Nidificación , Alcoholes/metabolismo , Comunicación Animal , Animales , Reacción de Fuga , Esterificación , Ésteres/metabolismo , Feromonas/metabolismo , Olfato , Ceras/metabolismo
16.
Angew Chem Int Ed Engl ; 55(7): 2356-60, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26749427

RESUMEN

Antibodies are indispensable tools for biomedicine and anticancer therapy. Nevertheless, their use is compromised by high production costs, limited stability, and difficulty of chemical modification. The design and preparation of synthetic polymer conjugates capable of replacing antibodies in biomedical applications such as ELISA, flow cytometry, immunocytochemistry, and immunoprecipitation is reported. The conjugates, named "iBodies", consist of an HPMA copolymer decorated with low-molecular-weight compounds that function as targeting ligands, affinity anchors, and imaging probes. We prepared specific conjugates targeting several proteins with known ligands and used these iBodies for enzyme inhibition, protein isolation, immobilization, quantification, and live-cell imaging. Our data indicate that this highly modular and versatile polymer system can be used to produce inexpensive and stable antibody substitutes directed toward virtually any protein of interest with a known ligand.


Asunto(s)
Anticuerpos/química , Imitación Molecular , Polímeros/química , Línea Celular Tumoral , Humanos , Interacciones Hidrofóbicas e Hidrofílicas
17.
Chembiochem ; 15(4): 533-6, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24458870

RESUMEN

In 1974, (E)-1-nitropentadec-1-ene, a strong lipophilic contact poison of soldiers of the termite genus Prorhinotermes, was the first-described insect-produced nitro compound. However, its biosynthesis remained unknown. In the present study, we tested the hypothesis that (E)-1-nitropentadec-1-ene biosynthesis originates with condensation of amino acids with tetradecanoic acid. By using in vivo experiments with radiolabeled and deuterium-labeled putative precursors, we show that (E)-1-nitropentadec-1-ene is synthesized by the soldiers from glycine or L-serine and tetradecanoic acid. We propose and discuss three possible biosynthetic pathways.


Asunto(s)
Isópteros/química , Naftalenos/metabolismo , Esfingosina/análogos & derivados , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Deuterio/química , Isópteros/metabolismo , Marcaje Isotópico , Ácido Mirístico/química , Ácido Mirístico/metabolismo , Naftalenos/química , Esfingosina/química , Estereoisomerismo
18.
Bioorg Med Chem ; 22(15): 4099-108, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24954515

RESUMEN

Glutamate carboxypeptidase II (GCPII), also known as prostate specific membrane antigen (PSMA), is an established prostate cancer marker and is considered a promising target for specific anticancer drug delivery. Low-molecular-weight inhibitors of GCPII are advantageous specific ligands for this purpose. However, they must be modified with a linker to enable connection of the ligand with an imaging molecule, anticancer drug, and/or nanocarrier. Here, we describe a structure-activity relationship (SAR) study of GCPII inhibitors with linkers suitable for imaging and drug delivery. Structure-assisted inhibitor design and targeting of a specific GCPII exosite resulted in a 7-fold improvement in Ki value compared to the parent structure. X-ray structural analysis of the inhibitor series led to the identification of several inhibitor binding modes. We also optimized the length of the inhibitor linker for effective attachment to a biotin-binding molecule and showed that the optimized inhibitor could be used to target nanoparticles to cells expressing GCPII.


Asunto(s)
Portadores de Fármacos/química , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Inhibidores de Proteasas/química , Urea/análogos & derivados , Sitios de Unión , Dominio Catalítico , Línea Celular Tumoral , Diseño de Fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glutamato Carboxipeptidasa II/genética , Glutamato Carboxipeptidasa II/metabolismo , Humanos , Cinética , Simulación de Dinámica Molecular , Nanopartículas/química , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/toxicidad , Unión Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie , Urea/síntesis química , Urea/toxicidad
19.
Eur J Med Chem ; 275: 116606, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38901105

RESUMEN

Rhomboid intramembrane serine proteases have been implicated in several pathologies, and emerge as attractive pharmacological target candidates. The most potent and selective rhomboid inhibitors available to date are peptidyl α-ketoamides, but their selectivity for diverse rhomboid proteases and strategies to modulate it in relevant contexts are poorly understood. This gap, together with the lack of suitable in vitro models, hinders ketoamide development for relevant eukaryotic rhomboid enzymes. Here we explore the structure-activity relationship principles of rhomboid inhibiting ketoamides by medicinal chemistry and enzymatic in vitro and in-cell assays with recombinant rhomboid proteases GlpG, human mitochondrial rhomboid PARL and human RHBDL2. We use X-ray crystallography in lipidic cubic phase to understand the binding mode of one of the best ketoamide inhibitors synthesized here containing a branched terminal substituent bound to GlpG. In addition, to extend the interpretation of the co-crystal structure, we use quantum mechanical calculations and quantify the relative importance of interactions along the inhibitor molecule. These combined experimental analyses implicates that more extensive exploration of chemical space at the prime side is unexpectedly powerful for the selectivity of rhomboid inhibiting ketoamides. Together with variations in the peptide sequence at the non-prime side, or its non-peptidic alternatives, this strategy enables targeted tailoring of potent and selective ketoamides towards diverse rhomboid proteases including disease-relevant ones such as PARL and RHBDL2.


Asunto(s)
Amidas , Humanos , Relación Estructura-Actividad , Estructura Molecular , Amidas/química , Amidas/farmacología , Amidas/síntesis química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/metabolismo , Modelos Moleculares
20.
ACS Sens ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941307

RESUMEN

Fluorescence-based contrast agents enable real-time detection of solid tumors and their neovasculature, making them ideal for use in image-guided surgery. Several agents have entered late-stage clinical trials or secured FDA approval, suggesting they are likely to become the standard of care in cancer surgeries. One of the key parameters to optimize in contrast agents is molecular size, which dictates much of the pharmacokinetic and pharmacodynamic properties of the agent. Here, we describe the development of a class of protease-activated quenched fluorescent probes in which a N-(2-hydroxypropyl)methacrylamide copolymer is used as the primary scaffold. This copolymer core provides a high degree of probe modularity to generate structures that cannot be achieved with small molecules and peptide probes. We used a previously validated cathepsin substrate and evaluated the effects of length and type of linker, as well as the positioning of the fluorophore/quencher pair on the polymer core. We found that the polymeric probes could be optimized to achieve increased overall signal and tumor-to-background ratios compared to the reference small molecule probe. Our results also revealed multiple structure-activity relationship trends that can be used to design and optimize future optical imaging probes. Furthermore, they confirm that a hydrophilic polymer is an ideal scaffold for use in optical imaging contrast probes, allowing a highly modular design that enables efficient optimization to maximize probe accumulation and overall biodistribution properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA