Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Glob Chang Biol ; 29(9): 2493-2509, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36786043

RESUMEN

Submerged aquatic vegetation (SAV) in lake littoral zones is an inland water wetland type that provides numerous essential ecosystem services, such as supplying food and habitat for fauna, regulating nutrient fluxes, stabilizing sediments, and maintaining a clear water state. However, little is known on how inland SAV quantities are changing globally in response to human activities, where loss threatens the provisioning of these ecosystem services. In this study, we generate a comprehensive global synthesis of trends in SAV quantities using time series (>10 years) in lakes and identify their main drivers. We compiled trends across methods and metrics, integrating both observational and paleolimnological approaches as well as diverse measures of SAV quantities, including areal extent, density, or abundance classes. The compilation revealed that knowledge on SAV is mostly derived from temperate regions, with major gaps in tropical, boreal, and mountainous lake-rich regions. Similar to other wetland types, we found that 41% of SAV times series are largely decreasing mostly due to land use change and resulting eutrophication. SAV is, however, increasing in 28% of cases, primarily since the 1980s. We show that trends and drivers of SAV quantities vary regionally, with increases in Europe explained mainly by management, decreases in Asia due to eutrophication and land use change, and variable trends in North America consistent with invasive species arrival. By providing a quantitative portrait of trends in SAV quantities worldwide, we identify knowledge gaps and future SAV research priorities. By considering the drivers of different trends, we also offer insight to future lake management related to climate, positive restoration actions, and change in community structure on SAV quantities.


La végétation aquatique submergée (VAS) dans la zone littorale des lacs fait partie des milieux humides des eaux continentales et soutient plusieurs services écologiques, tels que fournir un habitat pour la faune, réguler les flux de nutriments et stabiliser les sédiments. Cependant, comment les changements des quantités de VAS varient mondialement en réponse aux activités humaines demeurent peu connu, alors que leur perte menace le maintien de ces services écologiques. Dans cette étude, nous avons généré une synthèse globale des séries temporelles des quantités de VAS dans les lacs et avons identifié leurs tendances et leurs facteurs explicatifs. Nous avons compilé les tendances à travers les méthodes et les métriques, intégrant à la fois les approches observationnelles et paléolimnologiques ainsi que des mesures diverses de quantité de VAS, telles que la superficie de couverture, la densité et les classes d'abondance. La compilation a révélé que les connaissances sur la VAS proviennent surtout des régions tempérées, avec peu d'information dans les régions boréales, tropicales et montagneuses riches en lacs. Comme pour les autres types de milieux humides, nous avons trouvé que la VAS est largement en déclin, tel que reporté dans 41% des séries temporelles principalement à cause des changements d'utilisation du territoire et de l'eutrophisation. La VAS est cependant en augmentation dans 28 % des cas, surtout depuis les années 1980. Nous montrons que les tendances de la VAS et les facteurs explicatifs varient par région. En Europe, les augmentations sont expliquées principalement par la gestion, en Asie, le déclin est fonction de l'eutrophisation et des changements d'utilisation du territoire, alors qu'en Amérique du Nord les tendances variables sont associées à l'arrivée de nouvelles espèces. En fournissant un portrait quantitatif des tendances de VAS à travers le monde, nous indiquons des lacunes dans les connaissances et les futures priorités de recherche. En se penchant sur les facteurs explicatifs, nous offrons des informations sur l'influence du climat, des actions de restauration positives et du changement de la structure des communautés sur la VAS qui pourront informer les gestionnaires des lacs.


Asunto(s)
Ecosistema , Lagos , Humanos , Lagos/química , Humedales , Alimentos , Agua
2.
Ecology ; 97(4): 1069-80, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27220222

RESUMEN

The use of functional traits to characterize community composition has been proposed as a more effective way to link community structure to ecosystem functioning. Organismal morphology, body stoichiometry, and physiology can be readily linked to large-scale ecosystem processes through functional traits that inform on interspecific and species-environment interactions; yet such effect traits are still poorly included in trait-based approaches. Given their key trophic position in aquatic ecosystems, individual zooplankton affect energy fluxes and elemental processing. We compiled a large database of zooplankton traits contributing to carbon, nitrogen, and phosphorus cycling and examined the effect of classification and habitat (marine vs. freshwater) on trait relationships. Respiration and nutrient excretion rates followed mass-dependent scaling in both habitats, with exponents ranging from 0.70 to 0.90. Our analyses revealed surprising differences in allometry and respiration between habitats, with freshwater species having lower length-specific mass and three times higher mass-specific respiration rates. These differences in traits point to implications for ecological strategies as well as overall carbon storage and fluxes based on habitat type. Our synthesis quantifies multiple trait relationships and links organisms to ecosystem processes they influence, enabling a more complete integration of aquatic community ecology and biogeochemistry through the promising use of effect traits.


Asunto(s)
Ecosistema , Zooplancton/fisiología , Animales , Tamaño Corporal , Crustáceos/clasificación , Crustáceos/fisiología
3.
Ecology ; 97(4): 1081, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28792594

RESUMEN

This data compilation synthesizes 8609 individual observations and ranges of 13 traits from 201 freshwater and 191 marine crustacean taxa belonging to either Copepoda or Cladocera, two important zooplankton groups across all major aquatic habitats. Most data were gathered from the literature, with the balance being provided by zooplankton ecologists. With the aim of more fully assessing zooplankton effects on elemental processes such as nitrogen (N), phosphorus (P) and carbon (C) stocks and fluxes in aquatic ecosystems, this data set provides information on the following traits: body size (length and mass), trophic group, elemental and biochemical corporal composition (N, P, C, lipid and protein content), respiration rates, N- and P-excretion rates, as well as stoichiometric ratios. Although relationships for zooplankton metabolism as a function of body mass or requirements have been explored in the past three decades, data have not been systematically compiled nor examined from an integrative and large-scale perspective across crustacean taxa and habitat types. While this contribution likely represents the most comprehensive assembly of traits for both marine and freshwater species, this data set is not exhaustive either. As a result, this compilation also identifies knowledge gaps: a fact that should encourage researchers to disclose information they may have to help complete such databases. This trait matrix is made available for the first time in this data paper; prior to its release, the data set has been analyzed in a meta-analysis published as a companion paper. This data set should prove extremely valuable for aquatic ecologists for trait-based characterization of plankton community structure as well as biogeochemical modeling. These data are also well-suited for deriving shortcut relationships that predict more difficult to measure trait values, most of which can be directly related to ecosystem properties (i.e., effect traits), from simpler traits (e.g., body size), and for exploring patterns of trait variation within and amongst taxonomic units or ecosystem types. Overall, this data set is likely to provide new insights into the functional structure of zooplankton communities and increase our mechanistic understanding of the influence of these pivotal organisms on aquatic ecosystems.


Asunto(s)
Ecosistema , Fenotipo , Zooplancton/fisiología , Animales , Cladóceros , Copépodos , Monitoreo del Ambiente , Agua Dulce , Agua de Mar , Zooplancton/genética
4.
Environ Sci Technol ; 50(12): 6267-75, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27266257

RESUMEN

Increasing air temperatures may result in stronger lake stratification, potentially altering nutrient and biogenic gas cycling. We assessed the impact of climate forcing by comparing the influence of stratification on oxygen, nutrients, and global-warming potential (GWP) of greenhouse gases (the sum of CH4, CO2, and N2O in CO2 equivalents) emitted from a shallow productive lake during an average versus a heat-wave year. Strong stratification during the heat wave was accompanied by an algal bloom and chemically enhanced carbon uptake. Solar energy trapped at the surface created a colder, isolated hypolimnion, resulting in lower ebullition and overall lower GWP during the hotter-than-average year. Furthermore, the dominant CH4 emission pathway shifted from ebullition to diffusion, with CH4 being produced at surprisingly high rates from sediments (1.2-4.1 mmol m(-2) d(-1)). Accumulated gases trapped in the hypolimnion during the heat wave resulted in a peak efflux to the atmosphere during fall overturn when 70% of total emissions were released, with littoral zones acting as a hot spot. The impact of climate warming on the GWP of shallow lakes is a more complex interplay of phytoplankton dynamics, emission pathways, thermal structure, and chemical conditions, as well as seasonal and spatial variability, than previously reported.


Asunto(s)
Lagos , Oxígeno , Gases , Calentamiento Global , Efecto Invernadero , Calor , Metano , Fitoplancton
5.
Proteomics ; 15(20): 3566-79, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26223443

RESUMEN

Here we harnessed the power of metaproteomics to assess the metabolic diversity and function of stratified aquatic microbial communities in the deep and expansive Lower St. Lawrence Estuary, located in eastern Canada. Vertical profiling of the microbial communities through the stratified water column revealed differences in metabolic lifestyles and in carbon and nitrogen processing pathways. In productive surface waters, we identified heterotrophic populations involved in the processing of high and low molecular weight organic matter from both terrestrial (e.g. cellulose and xylose) and marine (e.g. organic compatible osmolytes) sources. In the less productive deep waters, chemosynthetic production coupled to nitrification by MG-I Thaumarchaeota and Nitrospina appeared to be a dominant metabolic strategy. Similar to other studies of the coastal ocean, we identified methanol oxidation proteins originating from the common OM43 marine clade. However, we also identified a novel lineage of methanol-oxidizers specifically in the particle-rich bottom (i.e. nepheloid) layer. Membrane transport proteins assigned to the uncultivated MG-II Euryarchaeota were also specifically detected in the nepheloid layer. In total, these results revealed strong vertical structure of microbial taxa and metabolic activities, as well as the presence of specific "nepheloid" taxa that may contribute significantly to coastal ocean nutrient cycling.


Asunto(s)
Archaea/genética , Bacterias/genética , Proteínas de Transporte de Membrana/genética , Proteómica , Canadá , Carbono/metabolismo , Proteínas de Transporte de Membrana/biosíntesis , Metagenómica , Nitrificación/genética , Nitrógeno/metabolismo , Microbiología del Agua
6.
Water Sci Technol ; 65(7): 1151-7, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22437010

RESUMEN

Submerged aquatic vegetation (SAV) may serve as an integrative proxy of spatial and temporal nitrogen (N) availability in aquatic ecosystems as plants are physiologically capable of storing variable amounts of N. However, it is important to understand whether plant species behave similarly or differently within and among systems. We sampled different SAV species along a nutrient gradient at multiple sites within several lakes to determine variability in C:N ratios and % N content among species, among plants of the same species at a single site, among sites and among lakes. Species respond differently suggesting that not all plant types can be used universally as nutrient proxies. The greatest variability in % N and C:N ratios for Valliseneria americana was observed among lakes whereas for Elodea canadensis it was among sites within a lake and among plants within a site. This suggests that V. americana could be a particularly useful indicator of N availability at larger spatial scales (regional and within a large fluvial lake) but that E. canadensis was not a particularly useful proxy.


Asunto(s)
Lagos , Magnoliopsida/metabolismo , Ciclo del Nitrógeno , Nitrógeno/metabolismo
7.
Sci Adv ; 8(27): eabn0035, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35857452

RESUMEN

The microbial carbon pump (MCP) hypothesis suggests that successive transformation of labile dissolved organic carbon (DOC) by prokaryotes produces refractory DOC (RDOC) and contributes to the long-term stability of the deep ocean DOC reservoir. We tested the MCP by exposing surface water from a deep convective region of the ocean to epipelagic, mesopelagic, and bathypelagic prokaryotic communities and tracked changes in dissolved organic matter concentration, composition, and prokaryotic taxa over time. Prokaryotic taxa from the deep ocean were more efficient at consuming DOC and producing RDOC as evidenced by greater abundance of highly oxygenated molecules and fluorescent components associated with recalcitrant molecules. This first empirical evidence of the MCP in natural waters shows that carbon sequestration is more efficient in deeper waters and suggests that the higher diversity of prokaryotes from the rare biosphere holds a greater metabolic potential in creating these stable dissolved organic compounds.

8.
Oecologia ; 166(2): 357-68, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21170750

RESUMEN

During the last 20 years, ecologists discovered the importance of including spatial relationships in models of species distributions. Among the latest developments in modelling how species are spatially structured are eigenfunction-based spatial filtering methods such as Moran's eigenvector maps (MEM) and principal coordinates of neighbour matrices (PCNM). Although these methods are very powerful and flexible, they are only suited to study distributions resulting from non-directional spatial processes. The asymmetric eigenvector map (AEM) framework, a new eigenfunction-based spatial filtering method, fills this theoretical gap. AEM was specifically designed to model spatial structures hypothesized to be produced by directional spatial processes. Water currents, prevailing wind on mountainsides, river networks, and glaciations at historical time scales are some of the situations where AEM can be used. This paper presents three applications of the method illustrating different combinations of: sampling schemes (regular and irregular), data types (univariate and multivariate), and spatial scales (metres, kilometres, and hundreds of kilometres). The applications include the distribution of a crustacean (Atya) in a river, bacterial production in a lake, and the distribution of the copepodite stages of a crustacean on the Atlantic oceanic shelf. In each application, a comparison is made between AEM, MEM, and PCNM. No environmental components were included in the comparisons. AEM was a strong predictor in all cases, explaining 59.8% for Atya distribution, 51.4% of the bacterial production variation, and 38.4% for the copepodite distributions. AEM outperformed MEM and PCNM in these applications, offering a powerful and more appropriate tool for spatial modelling of species distributions under directional forcing and leading to a better understanding of the processes at work in these systems.


Asunto(s)
Copépodos/fisiología , Decápodos/fisiología , Modelos Biológicos , Microbiología del Agua , Animales , Océano Atlántico , Biodiversidad , Guadalupe , Terranova y Labrador , Densidad de Población , Quebec , Ríos , Movimientos del Agua
9.
Water Res ; 196: 116985, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33735621

RESUMEN

Lakes are important sources of greenhouse gases (GHGs) to the atmosphere. Factors controlling CO2, CH4 and N2O fluxes include eutrophication and warming, but the integrated influence of climate-warming-driven stratification, oxygen loss and resultant changes in bloom characteristics on GHGs are not well understood. Here we assessed the influence of contrasting meteorological conditions on stratification and phytoplankton bloom composition in a eutrophic lake, and tested for associated changes in GHGs inventories in both the shallow and deep waters, over three seasons (2010-2012). Atmospheric heatwaves had one of the most dramatic effects on GHGs. Indeed, cyanobacterial blooms that developed in response to heatwave events in 2012 enhanced both sedimentary CH4 concentrations (reaching up to 1mM) and emissions to the atmosphere (up to 8 mmol m-2 d-1). That summer, CH4 contributed 52% of the integrated warming potential of GHGs produced in the lake (in CO2 equivalents) as compared to between 34 and 39% in years without cyanobacterial blooms. High CH4 accumulation and subsequent emission in 2012 were preceded by CO2 and N2O consumption and under-saturation at the lake surface (uptakes at -30 mmol m-2 d-1 and -1.6 µmol m-2 d-1, respectively). Fall overturn presented a large efflux of N2O and CH4, particularly from the littoral zone after the cyanobacterial bloom. We provide evidence that, despite cooling observed at depth during hot summers, CH4 emissions increased via stronger stratification and surface warming, resulting in enhanced cyanobacterial biomass deposition and intensified bottom water anoxia. Our results, supported by recent literature reports, suggests a novel interplay between climate change effects on lake hydrodynamics that impacts both bloom characteristics and GHGs production in shallow eutrophic lakes. Given global trends of warming and enrichment, these interactive effects should be considered to more accurately predict the future global role of lakes in GHG emissions.


Asunto(s)
Gases de Efecto Invernadero , Lagos , Dióxido de Carbono/análisis , China , Lagos/análisis , Metano/análisis , Fitoplancton
10.
Sci Total Environ ; 715: 136411, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32040988

RESUMEN

Streams are important sites of elemental transformations due to the relatively high contact rates between flowing water and biogeochemically reactive sediments. Increased urbanization typically results in higher nutrient and carbon (C) inputs to streams from their watersheds and increased flow rates due to modification in channel form, reducing within stream net retention and increasing downstream exports. However, less is known on how moderate urbanization might influence the joint processing of C, nitrogen (N), and phosphorus (P) in streams or the relative influence of changes in watershed and stream features on their fluxes. In this study, we performed mass-balances of different C, N, and P species in multiple reaches with contrasting land use land cover and geomorphic features (pools, riffles, runs) to determine the effects of geomorphology versus human influence on elemental fluxes in a pristine and a semi-urban stream. N was the most responsive of all elements, where nitrate concentrations were 3.5-fold higher in the peri-urban stream. Dissolved organic carbon was only slightly higher in the peri-urban site whereas total P not significantly different between streams. In terms of fluxes, nitrate behaved differently between the streams with net retention occurring in the majority of the reaches of the pristine site, whereas net export was observed in all of the reaches of the semi-urban one. We found a decrease in nitrate concentrations with an increase in excess deuterium of the water (d-excess), an indicator of how overall water retention capacity of the watershed favored N loss. Within the stream, the presence of pools, and reduced channel slope, which also increase water retention time, again favored N loss. Overall, nitrate was the most sensitive nutrient to slight urbanization, where higher export to stream was influenced by land use, but where geomorphic features were more important in driving retention capacity.

11.
Water Res ; 43(2): 535-45, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19036399

RESUMEN

Nitrogen (N) processing in constructed wetlands (CWs) is often variable, and the contribution to N loss and retention by various pathways (nitrification/denitrification, plant uptake and sediment storage) remains unclear. We studied the seasonal variation of the effects of artificial aeration and three different macrophyte species (Phragmites australis, Typha angustifolia and Phalaris arundinacea) on N processing (removal rates, transformations and export) using experimental CW mesocosms. Removal of total nitrogen (TN) was higher in summer and in planted and aerated units, with the highest mean removal in units planted with T. angustifolia. Export of ammonium (NH(4)(+)), a proxy for nitrification limitation, was higher in winter, and in unplanted and non-aerated units. Planted and aerated units had the highest export of oxidized nitrogen (NO(y)), a proxy for reduced denitrification. Redox potential, evapotranspiration (ETP) rates and hydraulic retention times (HRT) were all predictors of TN, NH(4)(+) and NO(y) export, and significantly affected by plants. Denitrification was the main N sink in most treatments accounting for 47-62% of TN removal, while sediment storage was dominant in unplanted non-aerated units and units planted with P. arundinacea. Plant uptake accounted for less than 20% of the removal. Uncertainties about the long-term fate of the N stored in sediments suggest that the fraction attributed to denitrification losses could be underestimated in this study.


Asunto(s)
Nitrógeno/metabolismo , Plantas/metabolismo , Humedales , Biodegradación Ambiental , Eliminación de Residuos Líquidos , Movimientos del Agua , Purificación del Agua
12.
PLoS One ; 14(3): e0213748, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30893339

RESUMEN

We investigated the variability in ammonia oxidation (AO) rates and the presence of ammonia-oxidizing archaea and bacteria (AOB and AOA) over an annual cycle in the water column of a small, seasonnally ice covered, temperate shield lake. AO, the first step of nitrification, was measured in situ using 15N-labelled ammonium (NH4+) at 1% and 10% of photosynthetic active radiation during day and at the same depths during night. AO was active across seasons and light levels, ranging from undetectable to 333 nmol L-1 d-1 with peak activity in winter under ice cover. NH4+ concentration was the single most important positive predictor of AO rates. High NH4+ concentrations and reduced chlorophyll a concentrations under ice, which favoured AO, were coherent with high nitrate concentrations and super saturation in nitrous oxide. When targeting the ammonia monooxygenase (amoA) gene in samples from the photic zone, we found AOA to be omnipresent throughout the year while AOB were observed predominantly during winter. Our results demonstrate that AO is an ongoing process in sunlit surface waters of temperate lakes and at all seasons with pronounced nitrification activity observed during winter under ice. The combination of high NH4+ concentrations due to fall overturn, reduced light availability that limited phytoplankton competition, and the presence of AOB together with AOA apparently favoured these elevated rates under ice. We suggest that lake ice could be a control point for nitrification in oligotrophic temperate shield lakes, characterized as a moment and place that exerts disproportionate influence on the biogeochemical behaviour of ecosystems.


Asunto(s)
Lagos/química , Nitrificación/fisiología , Amoníaco/química , Archaea/genética , Archaea/aislamiento & purificación , Proteínas Arqueales/clasificación , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clorofila A/análisis , ADN de Archaea/metabolismo , ADN Bacteriano/metabolismo , Ecosistema , Cubierta de Hielo , Lagos/microbiología , Óxidos de Nitrógeno/análisis , Oxidación-Reducción , Oxidorreductasas/clasificación , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Filogenia , Estaciones del Año
13.
Sci Total Environ ; 695: 133668, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31419692

RESUMEN

The distribution and quality of water resources vary dramatically across Canada, and human impacts such as land-use and climate changes are exacerbating uncertainties in water supply and security. At the national level, Canada has no enforceable standards for safe drinking water and no comprehensive water-monitoring program to provide detailed, timely reporting on the state of water resources. To provide Canada's first national assessment of lake health, the NSERC Canadian Lake Pulse Network was launched in 2016 as an academic-government research partnership. LakePulse uses traditional approaches for limnological monitoring as well as state-of-the-art methods in the fields of genomics, emerging contaminants, greenhouse gases, invasive pathogens, paleolimnology, spatial modelling, statistical analysis, and remote sensing. A coordinated sampling program of about 680 lakes together with historical archives and a geomatics analysis of over 80,000 lake watersheds are used to examine the extent to which lakes are being altered now and in the future, and how this impacts aquatic ecosystem services of societal importance. Herein we review the network context, objectives and methods.

14.
Sci Rep ; 8(1): 6705, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712952

RESUMEN

Human activities have increased the global circulation of mercury, a potent neurotoxin. Mercury can be converted into methylmercury, which biomagnifies along aquatic food chains and leads to high exposure in fish-eating populations. Here we quantify temporal trends in the ocean-to-land transport of total mercury and methylmercury from fisheries and we estimate potential human mercury intake through fish consumption in 175 countries. Mercury export from the ocean increased over time as a function of fishing pressure, especially on upper-trophic-level organisms. In 2014, over 13 metric tonnes of mercury were exported from the ocean. Asian countries were important contributors of mercury export in the last decades and the western Pacific Ocean was identified as the main source. Estimates of per capita mercury exposure through fish consumption showed that populations in 38% of the 175 countries assessed, mainly insular and developing nations, were exposed to doses of methylmercury above governmental thresholds. Our study shows temporal trends and spatial patterns of Hg transport by fisheries. Given the high mercury intake through seafood consumption observed in several understudied yet vulnerable coastal communities, we recommend a comprehensive assessment of the health exposure risk of those populations.


Asunto(s)
Monitoreo del Ambiente , Mercurio/toxicidad , Compuestos de Metilmercurio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Asia , Exposición a Riesgos Ambientales , Explotaciones Pesqueras , Peces , Contaminación de Alimentos/análisis , Humanos , Océano Pacífico , Alimentos Marinos/toxicidad
15.
Limnol Oceanogr Bull ; 30(1): 24-25, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33821154
16.
Water Res ; 101: 64-74, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27258617

RESUMEN

Waste stabilisation ponds (WSPs) are highly enriched environments that may emit large quantities of greenhouse gases (GHG), including CO2, CH4 and N2O. However, few studies provide detailed reports on these emissions. In the present study, we investigated GHG emissions from WSPs in Western Australia and Quebec, Canada, and compared emissions to WSPs from other climatic regions and to other types of aquatic ecosystems. Surface water GHG concentrations were related to phytoplankton biomass and nutrients. The CO2 was either emitted or absorbed by WSPs, largely as a function of phytoplankton dynamics and strong stratification in these shallow systems, whereas efflux of CH4 and N2O to the atmosphere was always observed albeit with highly variable emission rates, dependent on treatment phase and time of the day. The total global warming potential index (GWP index, calculated as CO2 equivalent) of emitted GHG from WSPs in Western Australia averaged 12.8 mmol m(-2) d(-1) (median), with CO2, CH4 and N2O respectively contributing 0%, 96.7% and 3.3% of the total emissions, while in Quebec WSPs this index was 194 mmol m(-2) d(-1), with a relative contribution of 93.8, 3.0 and 3.2% respectively. The CO2 fluxes from WSPs were of the same order of magnitude as those reported in hydroelectric reservoirs and constructed wetlands in tropical climates, whereas CH4 fluxes were considerably higher compared to other aquatic ecosystems. N2O fluxes were in the same range of values reported for WSPs in subtropical climate.


Asunto(s)
Efecto Invernadero , Estanques , Metano , Quebec , Australia Occidental
17.
ISME J ; 9(8): 1835-45, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25700336

RESUMEN

Mixotrophy is a valuable functional trait used by microbes when environmental conditions vary broadly or resources are limited. In the sunlit waters of the ocean, photoheterotrophy, a form of mixotrophy, is often mediated by proteorhodopsin (PR), a seven helices transmembrane protein binding the retinal chromophore. Altogether, they allow bacteria to capture photic energy for sensory and proton gradient formation cell functions. The seasonal occurrence and diversity of the gene coding for PR in cold oligotrophic polar oceans is not known and PR expression has not yet been reported. Here we show that PR is widely distributed among bacterial taxa, and that PR expression decreased markedly during the winter months in the Arctic Ocean. Gammaproteobacteria-like PR sequences were always dominant. However, within the second most common affiliation, there was a transition from Flavobacteria-like PR in early winter to Alphaproteobacteria-like PR in late winter. The phylogenetic shifts followed carbon dynamics, where patterns in expression were consistent with community succession, as identified by DNA community fingerprinting. Although genes for PR were always present, the trend in decreasing transcripts from January to February suggested reduced functional utility of PR during winter. Under winter darkness, sustained expression suggests that PR may continue to be useful for non-ATP forming functions, such as environmental sensing or small solute transport. The persistence of PR expression in winter among some bacterial groups may offer a competitive advantage, where its multifunctionality enhances microbial survival under harsh polar conditions.


Asunto(s)
Adaptación Fisiológica , Bacterias/aislamiento & purificación , Océanos y Mares , Rodopsinas Microbianas/genética , Agua de Mar , Regiones Árticas , Bacterias/genética , Bacterias/metabolismo , Dermatoglifia del ADN , ADN Bacteriano/análisis , Flavobacterium/genética , Filogenia , Rodopsinas Microbianas/metabolismo , Estaciones del Año , Agua de Mar/química , Agua de Mar/microbiología
18.
PLoS One ; 9(1): e85573, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24427318

RESUMEN

The eutrophication of freshwaters is a global health concern as lakes with excess nutrients are often subject to toxic cyanobacterial blooms. Although phosphorus is considered the main element regulating cyanobacterial biomass, nitrogen (N) concentration and more specifically the availability of different N forms may influence the overall toxicity of blooms. In this study of three eutrophic lakes prone to cyanobacterial blooms, we examined the effects of nitrogen species and concentrations and other environmental factors in influencing cyanobacterial community structure, microcystin (MC) concentrations and MC congener composition. The identification of specific MC congeners was of particular interest as they vary widely in toxicity. Different nitrogen forms appeared to influence cyanobacterial community structure leading to corresponding effects on MC concentrations and composition. Total MC concentrations across the lakes were largely explained by a combination of abiotic factors: dissolved organic nitrogen, water temperature and ammonium, but Microcystis spp. biomass was overall the best predictor of MC concentrations. Environmental factors did not appear to affect MC congener composition directly but there were significant associations between specific MC congeners and particular species. Based on redundancy analyses (RDA), the relative biomass of Microcystis aeruginosa was associated with MC-RR, M. wesenbergii with MC-LA and Aphanizomenon flos-aquae with MC-YR. The latter two species are not generally considered capable of MC production. Total nitrogen, water temperature, ammonium and dissolved organic nitrogen influenced the cyanobacterial community structure, which in turn resulted in differences in the dominant MC congener and the overall toxicity.


Asunto(s)
Cianobacterias/fisiología , Microcistinas/química , Nitrógeno/química , Biomasa , Eutrofización , Agua Dulce/química , Agua Dulce/microbiología , Lagos/química , Lagos/microbiología , Fitoplancton , Quebec , Estaciones del Año
20.
Environ Pollut ; 157(3): 748-54, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19110349

RESUMEN

Greenhouse gas (GHG) emissions by constructed wetlands (CWs) could mitigate the environmental benefits of nutrient removal in these man-made ecosystems. We studied the effect of 3 different macrophyte species and artificial aeration on the rates of nitrous oxide (N(2)O), carbon dioxide (CO(2)) and methane (CH(4)) production in CW mesocosms over three seasons. CW emitted 2-10 times more GHG than natural wetlands. Overall, CH(4) was the most important GHG emitted in unplanted treatments. Oxygen availability through artificial aeration reduced CH(4) fluxes. Plant presence also decreased CH(4) fluxes but favoured CO(2) production. Nitrous oxide had a minor contribution to global warming potential (GWP<15%). The introduction of oxygen through artificial aeration combined with plant presence, particularly Typha angustifolia, had the overall best performance among the treatments tested in this study, including lowest GWP, greatest nutrient removal, and best hydraulic properties.


Asunto(s)
Ecosistema , Gases/análisis , Efecto Invernadero , Plantas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Humedales , Aire , Biodegradación Ambiental , Dióxido de Carbono/análisis , Ecología/métodos , Metano/análisis , Metano/biosíntesis , Óxido Nitroso/análisis , Poaceae/metabolismo , Estaciones del Año , Typhaceae/metabolismo , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA