Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Virol J ; 21(1): 144, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918875

RESUMEN

BACKGROUND: HIV-1 produces Tat, a crucial protein for transcription, viral replication, and CNS neurotoxicity. Tat interacts with TAR, enhancing HIV reverse transcription. Subtype C Tat variants (C31S, R57S, Q63E) are associated with reduced transactivation and neurovirulence compared to subtype B. However, their precise impact on Tat-TAR binding is unclear. This study investigates how these substitutions affect Tat-TAR interaction. METHODS: We utilized molecular modelling techniques, including MODELLER, to produce precise three-dimensional structures of HIV-1 Tat protein variants. We utilized Tat subtype B as the reference or wild type, and generated Tat variants to mirror those amino acid variants found in Tat subtype C. Subtype C-specific amino acid substitutions were selected based on their role in the neuropathogenesis of HIV-1. Subsequently, we conducted molecular docking of each Tat protein variant to TAR using HDOCK, followed by molecular dynamic simulations. RESULTS: Molecular docking results indicated that Tat subtype B (TatWt) showed the highest affinity for the TAR element (-262.07), followed by TatC31S (-261.61), TatQ63E (-256.43), TatC31S/R57S/Q63E (-238.92), and TatR57S (-222.24). However, binding free energy analysis showed higher affinities for single variants TatQ63E (-349.2 ± 10.4 kcal/mol) and TatR57S (-290.0 ± 9.6 kcal/mol) compared to TatWt (-247.9 ± 27.7 kcal/mol), while TatC31S and TatC31S/R57SQ/63E showed lower values. Interactions over the protein trajectory were also higher for TatQ63E and TatR57S compared to TatWt, TatC31S, and TatC31S/R57SQ/63E, suggesting that modifying amino acids within the Arginine/Glutamine-rich region notably affects TAR interaction. Single amino acid mutations TatR57S and TatQ63E had a significant impact, while TatC31S had minimal effect. Introducing single amino acid variants from TatWt to a more representative Tat subtype C (TatC31S/R57SQ/63E) resulted in lower predicted binding affinity, consistent with previous findings. CONCLUSIONS: These identified amino acid positions likely contribute significantly to Tat-TAR interaction and the differential pathogenesis and neuropathogenesis observed between subtype B and subtype C. Additional experimental investigations should prioritize exploring the influence of these amino acid signatures on TAR binding to gain a comprehensive understanding of their impact on viral transactivation, potentially identifying them as therapeutic targets.


Asunto(s)
Sustitución de Aminoácidos , VIH-1 , Simulación de Dinámica Molecular , Unión Proteica , Productos del Gen tat del Virus de la Inmunodeficiencia Humana , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , VIH-1/genética , VIH-1/clasificación , VIH-1/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Duplicado del Terminal Largo de VIH/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Modelos Moleculares
2.
Materials (Basel) ; 14(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34947447

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has gained worldwide attention and has prompted the development of innovative diagnostics, therapeutics, and vaccines to mitigate the pandemic. Diagnostic methods based on reverse transcriptase-polymerase chain reaction (RT-PCR) technology are the gold standard in the fight against COVID-19. However, this test might not be easily accessible in low-resource settings for the early detection and diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The lack of access to well-equipped clinical laboratories, requirement for the high level of technical competence, and the cost of the RT-PCR test are the major limitations. Moreover, RT-PCR is unsuitable for application at the point-of-care testing (PoCT) as it is time-consuming and lab-based. Due to emerging mutations of the virus and the burden it has placed on the health care systems, there is a growing urgency to develop sensitive, selective, and rapid diagnostic devices for COVID-19. Nanotechnology has emerged as a versatile technology in the production of reliable diagnostic tools for various diseases and offers new opportunities for the development of COVID-19 diagnostic systems. This review summarizes some of the nano-enabled diagnostic systems that were explored for the detection of SARS-CoV-2. It highlights how the unique physicochemical properties of nanoparticles were exploited in the development of novel colorimetric assays and biosensors for COVID-19 at the PoCT. The potential to improve the efficiency of the current assays, as well as the challenges associated with the development of these innovative diagnostic tools, are also discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA