Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.020
Filtrar
1.
Cell ; 181(7): 1518-1532.e14, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32497502

RESUMEN

The rise of antibiotic resistance and declining discovery of new antibiotics has created a global health crisis. Of particular concern, no new antibiotic classes have been approved for treating Gram-negative pathogens in decades. Here, we characterize a compound, SCH-79797, that kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism of action (MoA) with undetectably low resistance frequencies. To characterize its MoA, we combined quantitative imaging, proteomic, genetic, metabolomic, and cell-based assays. This pipeline demonstrates that SCH-79797 has two independent cellular targets, folate metabolism and bacterial membrane integrity, and outperforms combination treatments in killing methicillin-resistant Staphylococcus aureus (MRSA) persisters. Building on the molecular core of SCH-79797, we developed a derivative, Irresistin-16, with increased potency and showed its efficacy against Neisseria gonorrhoeae in a mouse vaginal infection model. This promising antibiotic lead suggests that combining multiple MoAs onto a single chemical scaffold may be an underappreciated approach to targeting challenging bacterial pathogens.


Asunto(s)
Bacterias Gramnegativas/efectos de los fármacos , Pirroles/metabolismo , Pirroles/farmacología , Quinazolinas/metabolismo , Quinazolinas/farmacología , Animales , Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Femenino , Ácido Fólico/metabolismo , Bacterias Grampositivas/efectos de los fármacos , Células HEK293 , Humanos , Masculino , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Ovariectomía , Proteómica , Pseudomonas aeruginosa/efectos de los fármacos
2.
Nature ; 614(7948): 530-538, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36599368

RESUMEN

Resident-tissue macrophages (RTMs) arise from embryonic precursors1,2, yet the developmental signals that shape their longevity remain largely unknown. Here we demonstrate in mice genetically deficient in 12-lipoxygenase and 15-lipoxygenase (Alox15-/- mice) that neonatal neutrophil-derived 12-HETE is required for self-renewal and maintenance of alveolar macrophages (AMs) during lung development. Although the seeding and differentiation of AM progenitors remained intact, the absence of 12-HETE led to a significant reduction in AMs in adult lungs and enhanced senescence owing to increased prostaglandin E2 production. A compromised AM compartment resulted in increased susceptibility to acute lung injury induced by lipopolysaccharide and to pulmonary infections with influenza A virus or SARS-CoV-2. Our results highlight the complexity of prenatal RTM programming and reveal their dependency on in trans eicosanoid production by neutrophils for lifelong self-renewal.


Asunto(s)
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Autorrenovación de las Células , Macrófagos Alveolares , Neutrófilos , Animales , Ratones , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Lesión Pulmonar Aguda , Animales Recién Nacidos , Araquidonato 12-Lipooxigenasa/deficiencia , Araquidonato 15-Lipooxigenasa/deficiencia , COVID-19 , Virus de la Influenza A , Lipopolisacáridos , Pulmón/citología , Pulmón/virología , Macrófagos Alveolares/citología , Macrófagos Alveolares/metabolismo , Neutrófilos/metabolismo , Infecciones por Orthomyxoviridae , Prostaglandinas E , SARS-CoV-2 , Susceptibilidad a Enfermedades
3.
Nature ; 608(7921): 181-191, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35732239

RESUMEN

The heart, the first organ to develop in the embryo, undergoes complex morphogenesis that when defective results in congenital heart disease (CHD). With current therapies, more than 90% of patients with CHD survive into adulthood, but many suffer premature death from heart failure and non-cardiac causes1. Here, to gain insight into this disease progression, we performed single-nucleus RNA sequencing on 157,273 nuclei from control hearts and hearts from patients with CHD, including those with hypoplastic left heart syndrome (HLHS) and tetralogy of Fallot, two common forms of cyanotic CHD lesions, as well as dilated and hypertrophic cardiomyopathies. We observed CHD-specific cell states in cardiomyocytes, which showed evidence of insulin resistance and increased expression of genes associated with FOXO signalling and CRIM1. Cardiac fibroblasts in HLHS were enriched in a low-Hippo and high-YAP cell state characteristic of activated cardiac fibroblasts. Imaging mass cytometry uncovered a spatially resolved perivascular microenvironment consistent with an immunodeficient state in CHD. Peripheral immune cell profiling suggested deficient monocytic immunity in CHD, in agreement with the predilection in CHD to infection and cancer2. Our comprehensive phenotyping of CHD provides a roadmap towards future personalized treatments for CHD.


Asunto(s)
Cardiopatías Congénitas , Fenotipo , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/inmunología , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/inmunología , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/patología , Progresión de la Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Factores de Transcripción Forkhead/metabolismo , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/inmunología , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Humanos , Síndrome del Corazón Izquierdo Hipoplásico/genética , Síndrome del Corazón Izquierdo Hipoplásico/inmunología , Síndrome del Corazón Izquierdo Hipoplásico/metabolismo , Síndrome del Corazón Izquierdo Hipoplásico/patología , Citometría de Imagen , Resistencia a la Insulina , Monocitos/inmunología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , RNA-Seq , Transducción de Señal/genética , Análisis de la Célula Individual , Tetralogía de Fallot/genética , Tetralogía de Fallot/inmunología , Tetralogía de Fallot/metabolismo , Tetralogía de Fallot/patología , Proteínas Señalizadoras YAP/metabolismo
4.
Genes Dev ; 33(21-22): 1491-1505, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31558567

RESUMEN

Cardiac fibroblasts (CFs) respond to injury by transitioning through multiple cell states, including resting CFs, activated CFs, and myofibroblasts. We report here that Hippo signaling cell-autonomously regulates CF fate transitions and proliferation, and non-cell-autonomously regulates both myeloid and CF activation in the heart. Conditional deletion of Hippo pathway kinases, Lats1 and Lats2, in uninjured CFs initiated a self-perpetuating fibrotic response in the adult heart that was exacerbated by myocardial infarction (MI). Single cell transcriptomics showed that uninjured Lats1/2 mutant CFs spontaneously transitioned to a myofibroblast cell state. Through gene regulatory network reconstruction, we found that Hippo-deficient myofibroblasts deployed a network of transcriptional regulators of endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) consistent with elevated secretory activity. We observed an expansion of myeloid cell heterogeneity in uninjured Lats1/2 CKO hearts with similarity to cells recovered from control hearts post-MI. Integrated genome-wide analysis of Yap chromatin occupancy revealed that Yap directly activates myofibroblast cell identity genes, the proto-oncogene Myc, and an array of genes encoding pro-inflammatory factors through enhancer-promoter looping. Our data indicate that Lats1/2 maintain the resting CF cell state through restricting the Yap-induced injury response.


Asunto(s)
Fibroblastos/citología , Fibrosis/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Fibroblastos/patología , Fibrosis/fisiopatología , Eliminación de Gen , Ratones Endogámicos C57BL , Infarto del Miocardio/fisiopatología , Proteínas Señalizadoras YAP
5.
J Cell Sci ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896010

RESUMEN

Mitochondria, which act as sensors of metabolic homeostasis and metabolite signaling, form a dynamic intracellular network of continuously changing shape, size, and localization to respond to localized cellular energy demands. Mitochondrial dynamics and function depend on interactions with the F-actin cytoskeleton that are poorly understood. Here, we show that SET domain protein 3 (SETD3), a recently described actin histidine methyltransferase, directly methylates actin Histidine-73 and enhances F-actin polymerization on mitochondria. SETD3 is a mechano-sensitive enzyme which is localized on the outer mitochondrial membrane and promotes actin polymerization around mitochondrias. SETD3 loss of function leads to diminished F-actin around mitochondria and a decrease in mitochondrial branch length, branch number, and mitochondrial movement. Our functional analysis revealed that SETD3 is required for oxidative phosphorylation and mitochondrial complex I assembly, and function. Our data further indicate that SETD3 regulates F-actin formation around mitochondria and is essential for maintaining mitochondrial morphology, movement, and function. Finally, we discovered that SETD3 levels are regulated by ECM stiffness and regulate mitochondrial shape in response to changes in ECM stiffness. These findings provide new insight into the mechanism for F-actin polymerization around mitochondria.

6.
N Engl J Med ; 389(1): 11-21, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37158447

RESUMEN

BACKGROUND: Delays in the detection or treatment of postpartum hemorrhage can result in complications or death. A blood-collection drape can help provide objective, accurate, and early diagnosis of postpartum hemorrhage, and delayed or inconsistent use of effective interventions may be able to be addressed by a treatment bundle. METHODS: We conducted an international, cluster-randomized trial to assess a multicomponent clinical intervention for postpartum hemorrhage in patients having vaginal delivery. The intervention included a calibrated blood-collection drape for early detection of postpartum hemorrhage and a bundle of first-response treatments (uterine massage, oxytocic drugs, tranexamic acid, intravenous fluids, examination, and escalation), supported by an implementation strategy (intervention group). Hospitals in the control group provided usual care. The primary outcome was a composite of severe postpartum hemorrhage (blood loss, ≥1000 ml), laparotomy for bleeding, or maternal death from bleeding. Key secondary implementation outcomes were the detection of postpartum hemorrhage and adherence to the treatment bundle. RESULTS: A total of 80 secondary-level hospitals across Kenya, Nigeria, South Africa, and Tanzania, in which 210,132 patients underwent vaginal delivery, were randomly assigned to the intervention group or the usual-care group. Among hospitals and patients with data, a primary-outcome event occurred in 1.6% of the patients in the intervention group, as compared with 4.3% of those in the usual-care group (risk ratio, 0.40; 95% confidence interval [CI], 0.32 to 0.50; P<0.001). Postpartum hemorrhage was detected in 93.1% of the patients in the intervention group and in 51.1% of those in the usual-care group (rate ratio, 1.58; 95% CI, 1.41 to 1.76), and the treatment bundle was used in 91.2% and 19.4%, respectively (rate ratio, 4.94; 95% CI, 3.88 to 6.28). CONCLUSIONS: Early detection of postpartum hemorrhage and use of bundled treatment led to a lower risk of the primary outcome, a composite of severe postpartum hemorrhage, laparotomy for bleeding, or death from bleeding, than usual care among patients having vaginal delivery. (Funded by the Bill and Melinda Gates Foundation; E-MOTIVE ClinicalTrials.gov number, NCT04341662.).


Asunto(s)
Diagnóstico Precoz , Hemorragia Posparto , Femenino , Humanos , Embarazo , Oxitócicos/uso terapéutico , Hemorragia Posparto/diagnóstico , Hemorragia Posparto/terapia , Riesgo , Ácido Tranexámico/uso terapéutico
7.
Circulation ; 149(21): 1650-1666, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38344825

RESUMEN

BACKGROUND: Much of our knowledge of organ rejection after transplantation is derived from rodent models. METHODS: We used single-nucleus RNA sequencing to investigate the inflammatory myocardial microenvironment in human pediatric cardiac allografts at different stages after transplantation. We distinguished donor- from recipient-derived cells using naturally occurring genetic variants embedded in single-nucleus RNA sequencing data. RESULTS: Donor-derived tissue resident macrophages, which accompany the allograft into the recipient, are lost over time after transplantation. In contrast, monocyte-derived macrophages from the recipient populate the heart within days after transplantation and form 2 macrophage populations: recipient MP1 and recipient MP2. Recipient MP2s have cell signatures similar to donor-derived resident macrophages; however, they lack signatures of pro-reparative phagocytic activity typical of donor-derived resident macrophages and instead express profibrotic genes. In contrast, recipient MP1s express genes consistent with hallmarks of cellular rejection. Our data suggest that recipient MP1s activate a subset of natural killer cells, turning them into a cytotoxic cell population through feed-forward signaling between recipient MP1s and natural killer cells. CONCLUSIONS: Our findings reveal an imbalance of donor-derived and recipient-derived macrophages in the pediatric cardiac allograft that contributes to allograft failure.


Asunto(s)
Aloinjertos , Rechazo de Injerto , Trasplante de Corazón , Macrófagos , Humanos , Trasplante de Corazón/efectos adversos , Macrófagos/metabolismo , Rechazo de Injerto/inmunología , Rechazo de Injerto/genética , Masculino , Femenino , Niño , Preescolar , Miocardio/patología , Supervivencia de Injerto , Lactante , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Adolescente
8.
Eur J Immunol ; 54(4): e2249800, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38334162

RESUMEN

In asthma, CD4+ T-cell interaction with airway smooth muscle (ASM) may enhance its contractile properties and promote its proliferation. However, less is known about the effects of this interaction on T cells. To explore the consequences of interaction of CD4+ T cells with ASM we placed the cells in co-culture and analyzed the phenotypic and functional changes in the T cells. Effector status as well as cytokine expression was assessed by flow cytometry. An increase in CD45RA-CD45RO+ memory T cells was observed after co-culture; however, these cells were not more responsive to CD3/28 restimulation. A reduction in mitochondrial coupling and an increase in the production of mitochondrial reactive oxygen species by CD4+ T cells post-restimulation suggested altered mitochondrial metabolism after co-culture. RNA sequencing analysis of the T cells revealed characteristic downregulation of effector T-cell-associated genes, but a lack of upregulation of memory T-cell-associated genes. The results of this study demonstrate that ASM cells can induce a phenotypic shift in CD4+ T cells into memory-like T cells but with reduced capacity for activation.


Asunto(s)
Miocitos del Músculo Liso , Sistema Respiratorio , Miocitos del Músculo Liso/metabolismo , Técnicas de Cocultivo , Linfocitos T CD4-Positivos , Fenotipo
9.
Development ; 149(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36125128

RESUMEN

Hippo signaling, an evolutionarily conserved kinase cascade involved in organ size control, plays key roles in various tissue developmental processes, but its role in craniofacial development remains poorly understood. Using the transgenic Wnt1-Cre2 driver, we inactivated the Hippo signaling components Lats1 and Lats2 in the cranial neuroepithelium of mouse embryos and found that the double conditional knockout (DCKO) of Lats1/2 resulted in neural tube and craniofacial defects. Lats1/2 DCKO mutant embryos had microcephaly with delayed and defective neural tube closure. Furthermore, neuroepithelial cell shape and architecture were disrupted within the cranial neural tube in Lats1/2 DCKO mutants. RNA sequencing of embryonic neural tubes revealed increased TGFB signaling in Lats1/2 DCKO mutants. Moreover, markers of epithelial-to-mesenchymal transition (EMT) were upregulated in the cranial neural tube. Inactivation of Hippo signaling downstream effectors, Yap and Taz, suppressed neuroepithelial defects, aberrant EMT and TGFB upregulation in Lats1/2 DCKO embryos, indicating that LATS1/2 function via YAP and TAZ. Our findings reveal important roles for Hippo signaling in modulating TGFB signaling during neural crest EMT.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Transición Epitelial-Mesenquimal/genética , Ratones , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Cráneo , Factor de Crecimiento Transformador beta/metabolismo
10.
FASEB J ; 38(2): e23405, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38193542

RESUMEN

Airway smooth muscle (ASM) remodeling in asthmatic airways may contribute to persistent airflow limitation and airway hyperresponsiveness. CD4+ T cells infiltrate the ASM layer where they may induce a proliferative and secretory ASM cell phenotype. We studied the interaction between activated CD4+ T cells and ASM cells in co-culture in vitro and investigated the effects of CD4+ T cells on chemokine production by ASM cells. CD4+ T cells induced marked upregulation of C-X-C motif chemokine ligands (CXCL) 9, 10, and 11 in ASM cells. Blockade of the IFN-γ receptor on ASM cells prevented this upregulation. Furthermore, T cell-derived IFN-γ and LIGHT (lymphotoxin, exhibits inducible expression and competes with HSV glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on T lymphocytes) synergize in a dose-dependent manner to coordinately enhance CXCL9, 10, and 11 expression. The synergistic property of LIGHT was mediated exclusively through the lymphotoxin-ß receptor (LTBR), but not herpes virus entry mediator (HVEM). Disruption of LTBR signaling in ASM cells reduced CXCL9, 10, and 11 production and ASM cell-mediated CD4+ T cell chemotaxis. We conclude that the LIGHT-LTBR signaling axis acts together with IFN-γ to regulate chemokines that mediate lymphocyte infiltration in asthmatics.


Asunto(s)
Asma , Linfocitos T , Humanos , Miocitos del Músculo Liso , Músculo Liso , Remodelación de las Vías Aéreas (Respiratorias) , Linfocitos T CD4-Positivos
11.
Artículo en Inglés | MEDLINE | ID: mdl-38775474

RESUMEN

The transcription factors (TFs) myocardin (MyoCD) and ETS Like-1 protein (Elk-1) competitively bind to serum response factor (SRF) and control myogenic- and mitogenic-related gene expression in smooth muscle, respectively. Their functions are therefore mutually inhibitory, which result in a contractile versus proliferative phenotype dichotomy. Airway smooth muscle cell (ASMC) phenotype alterations occur in various inflammatory airway diseases, promoting pathological remodelling and contributing to airflow obstruction. We characterized MyoCD and Elk-1 interactions and their roles in phenotype determination in human ASMCs. MyoCD overexpression in ASMCs increased smooth muscle gene expression, force generation, and partially restored the loss of smooth muscle protein associated with prolonged culturing, while inhibiting Elk-1 transcriptional activities and proliferation induced by epidermal growth factor (EGF). However, MyoCD overexpression failed to suppress these responses induced by fetal bovine serum (FBS) as FBS also upregulated SRF expression to a degree that allowed unopposed function of both TFs. Inhibition of the RhoA pathway reversed said SRF changes, allowing inhibition of Elk-1 by MyoCD overexpression and suppressing FBS-mediated contractile protein gene upregulation. Our study confirmed that MyoCD in increased abundance can competitively inhibit Elk-1 function. However, SRF upregulation permits a dual contractile-proliferative ASMC phenotype, anticipated to exacerbate pathological alterations, whereas therapies targeting SRF may inhibit both pathological ASMC proliferation and contractile protein gene expression.

12.
Respir Res ; 25(1): 52, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263221

RESUMEN

BACKGROUND: Mucus plugs have been described in the airways of asthmatic subjects, particularly those with associated with type 2 inflammation and sputum eosinophilia. In the current study we addressed the question of whether smoking, neutrophilic inflammation and airway dimensions affected the prevalence of mucus plugs. METHODS: In a cohort of moderate to severe asthmatics (n = 50), including a group of ex-smokers and current smokers, the prevalence of mucus plugs was quantified using a semi-quantitative score based on thoracic computerized tomography. The relationships between mucus score, sputum inflammatory profile and airway architecture were tested according to patient's smoking status. RESULTS: Among the asthmatics (37% former or active smokers), 74% had at least one mucus plug. The median score was 3 and was unrelated to smoking status. A significant but weak correlation was found between mucus score, FEV1 and FEV1/FVC. Mucus score was significantly correlated with sputum eosinophils. Among former and active smokers, mucus score was correlated with sputum neutrophils. Mucus score was positively associated with FeNO in non-smoking subjects. The lumen dimensions of the main and lobar bronchi were significantly inversely correlated with mucus score. CONCLUSION: Airway mucus plugs could define an asthma phenotype with altered airway architecture and can occur in asthmatic subjects with either neutrophilic or eosinophilic sputum according to their smoking status.


Asunto(s)
Asma , Humanos , Moco , Esputo , Bronquios , Inflamación
13.
Nucleic Acids Res ; 50(W1): W290-W297, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35639508

RESUMEN

Long distance enhancers can physically interact with promoters to regulate gene expression through formation of enhancer-promoter (E-P) interactions. Identification of E-P interactions is also important for profound understanding of normal developmental and disease-associated risk variants. Although the state-of-art predictive computation methods facilitate the identification of E-P interactions to a certain extent, currently there is no efficient method that can meet various requirements of usage. Here we developed EPIXplorer, a user-friendly web server for efficient prediction, analysis and visualization of E-P interactions. EPIXplorer integrates 9 robust predictive algorithms, supports multiple types of 3D contact data and multi-omics data as input. The output from EPIXplorer is scored, fully annotated by regulatory elements and risk single-nucleotide polymorphisms (SNPs). In addition, the Visualization and Downstream module provide further functional analysis, all the output files and high-quality images are available for download. Together, EPIXplorer provides a user-friendly interface to predict the E-P interactions in an acceptable time, as well as understand how the genome-wide association study (GWAS) variants influence disease pathology by altering DNA looping between enhancers and the target gene promoters. EPIXplorer is available at https://www.csuligroup.com/EPIXplorer.


Asunto(s)
Estudio de Asociación del Genoma Completo , Secuencias Reguladoras de Ácidos Nucleicos , Programas Informáticos , Humanos , Algoritmos , Computadores , Susceptibilidad a Enfermedades , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Internet
14.
Nucleic Acids Res ; 50(4): 2270-2286, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35137168

RESUMEN

Human genetic studies identified a strong association between loss of function mutations in RBFOX2 and hypoplastic left heart syndrome (HLHS). There are currently no Rbfox2 mouse models that recapitulate HLHS. Therefore, it is still unknown how RBFOX2 as an RNA binding protein contributes to heart development. To address this, we conditionally deleted Rbfox2 in embryonic mouse hearts and found profound defects in cardiac chamber and yolk sac vasculature formation. Importantly, our Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS. To determine the molecular drivers of these cardiac defects, we performed RNA-sequencing in Rbfox2 mutant hearts and identified dysregulated alternative splicing (AS) networks that affect cell adhesion to extracellular matrix (ECM) mediated by Rho GTPases. We identified two Rho GTPase cycling genes as targets of RBFOX2. Modulating AS of these two genes using antisense oligos led to cell cycle and cell-ECM adhesion defects. Consistently, Rbfox2 mutant hearts displayed cell cycle defects and inability to undergo endocardial-mesenchymal transition, processes dependent on cell-ECM adhesion and that are seen in HLHS. Overall, our work not only revealed that loss of Rbfox2 leads to heart development defects resembling HLHS, but also identified RBFOX2-regulated AS networks that influence cell-ECM communication vital for heart development.


Asunto(s)
Empalme Alternativo , Corazón/embriología , Factores de Empalme de ARN/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Organogénesis , ARN/metabolismo , Factores de Empalme de ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
15.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38279286

RESUMEN

For decades, surgeons have utilized 0.9% normal saline (NS) for joint irrigation to improve visualization during arthroscopic procedures. This continues despite mounting evidence that NS exposure impairs chondrocyte metabolism and compromises articular cartilage function. We hypothesized that chondrocyte oxidative stress induced by low pH is the dominant factor driving NS toxicity, and that buffering NS to increase its pH would mitigate these effects. Effects on chondrocyte viability, reactive oxygen species (ROS) production, and overall metabolic function were assessed. Even brief exposure to NS caused cell death, ROS overproduction, and disruption of glycolysis, pentose phosphate, and tricarboxylic acid (TCA) cycle pathways. NS also stimulated ROS overproduction in synovial cells that could adversely alter the synovial function and subsequently the entire joint health. Buffering NS with 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) significantly increased chondrocyte viability, reduced ROS production, and returned metabolite levels to near control levels while also reducing ROS production in synovial cells. These results confirm that chondrocytes and synoviocytes are vulnerable to insult from the acidic pH of NS and demonstrate that adding a buffering agent to NS averts many of its most harmful effects.


Asunto(s)
Cartílago Articular , Condrocitos , Condrocitos/metabolismo , Solución Salina , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/fisiología , Muerte Celular , Cartílago Articular/metabolismo
16.
J Infect Dis ; 227(3): 457-465, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35196388

RESUMEN

BACKGROUND: Chikungunya virus (CHIKV) is an arbovirus that periodically emerges to cause large epidemics of arthritic disease. Although the robust immunity elicited by live-attenuated virus (LAV) vaccine candidates makes them attractive, CHIKV vaccine development has been hampered by a high threshold for acceptable adverse events. METHODS: We evaluated the vaccine potential of a recently described LAV, skeletal muscle-restricted virus (SKE), that exhibits diminished replication in skeletal muscle due to insertion of target sequences for skeletal muscle-specific miR-206. We also evaluated whether these target sequences could augment safety of an LAV encoding a known attenuating mutation, E2 G82R. Attenuation of viruses containing these mutations was compared with a double mutant, SKE G82R. RESULTS: SKE was attenuated in both immunodeficient and immunocompetent mice and induced a robust neutralizing antibody response, indicating its vaccine potential. However, only SKE G82R elicited diminished swelling in immunocompetent mice at early time points postinoculation, indicating that these mutations synergistically enhance safety of the vaccine candidate. CONCLUSIONS: These data suggest that restriction of LAV replication in skeletal muscle enhances tolerability of reactogenic vaccine candidates and may improve the rational design of CHIKV vaccines.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Vacunas Virales , Animales , Ratones , Virus Chikungunya/genética , Fiebre Chikungunya/prevención & control , Vacunas Virales/genética , Anticuerpos Neutralizantes , Mutación , Vacunas Atenuadas/genética , Anticuerpos Antivirales
17.
Genome Res ; 30(12): 1835-1845, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184104

RESUMEN

Transcriptional enhancers commonly work over long genomic distances to precisely regulate spatiotemporal gene expression patterns. Dissecting the promoters physically contacted by these distal regulatory elements is essential for understanding developmental processes as well as the role of disease-associated risk variants. Modern proximity-ligation assays, like HiChIP and ChIA-PET, facilitate the accurate identification of long-range contacts between enhancers and promoters. However, these assays are technically challenging, expensive, and time-consuming, making it difficult to investigate enhancer topologies, especially in uncharacterized cell types. To overcome these shortcomings, we therefore designed LoopPredictor, an ensemble machine learning model, to predict genome topology for cell types which lack long-range contact maps. To enrich for functional enhancer-promoter loops over common structural genomic contacts, we trained LoopPredictor with both H3K27ac and YY1 HiChIP data. Moreover, the integration of several related multi-omics features facilitated identifying and annotating the predicted loops. LoopPredictor is able to efficiently identify cell type-specific enhancer-mediated loops, and promoter-promoter interactions, with a modest feature input requirement. Comparable to experimentally generated H3K27ac HiChIP data, we found that LoopPredictor was able to identify functional enhancer loops. Furthermore, to explore the cross-species prediction capability of LoopPredictor, we fed mouse multi-omics features into a model trained on human data and found that the predicted enhancer loops outputs were highly conserved. LoopPredictor enables the dissection of cell type-specific long-range gene regulation and can accelerate the identification of distal disease-associated risk variants.


Asunto(s)
Biología Computacional/métodos , Elementos de Facilitación Genéticos , Factores Reguladores del Interferón/genética , Melanoma/genética , Animales , Línea Celular Tumoral , Perros , Caballos , Humanos , Aprendizaje Automático , Ratones , Modelos Genéticos , Trasplante de Neoplasias , Regiones Promotoras Genéticas , Porcinos , Pez Cebra
18.
Neuroepidemiology ; 57(5): 275-283, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37231971

RESUMEN

BACKGROUND: It is not clear whether conventional vascular risk factors are responsible for most strokes in patients younger than 45 years of age. Our objective was to evaluate the association of common risk factors with stroke in individuals under 45 years. METHODS: INTERSTROKE was a case-control study carried out in 32 countries between 2007 and 2015. Patients presenting within 5 days of symptom onset of a first stroke were enrolled as cases. Controls were age and sex matched to cases and had no history of stroke. Cases and controls underwent similar evaluations. Odds ratios (ORs) and population attributable risks (PARs) were calculated to determine the association of various risk factors with all stroke, ischemic stroke, and intracranial hemorrhage, for patients 45 years of age or younger. FINDINGS: 1,582 case-control pairs were included in this analysis. The mean age of this cohort was 38.5 years (SD 6.32). Overall, 71% strokes were ischemic. Cardiac causes {OR: 8.42 (95% confidence interval [CI]: 3.01-23.5)}; binge drinking of alcohol (OR: 5.44 [95% CI: 1.81-16.4]); hypertension (OR: 5.41 [95% CI: 3.40-8.58]); ApoB/ApoA1 ratio (OR: 2.74 [95% CI: 1.69-4.46]); psychosocial stress (OR: 2.33 [95% CI: 1.01-5.41]); smoking (OR: 1.85 [95% CI: 1.17-2.94]); and increased waist-to-hip ratio (OR: 1.69 [95% CI: 1.04-2.75]) were the most important risk factors for ischemic stroke in these young cases. For intracerebral hemorrhage, only hypertension (OR: 9.08 [95% CI: 5.46-15.1]) and binge drinking (OR: 4.06 [95% CI: 1.27-13.0]) were significant risk factors. The strength of association and population attributable risk (PAR) for hypertension increased with age (PAR 23.3% in those <35 years of age, 50.7% in 35-45 years of age). INTERPRETATION: Conventional risk factors such as hypertension, smoking, binge drinking of alcohol, central obesity, cardiac causes, dyslipidemia, and psychosocial stress are important risk factors for stroke in those younger than 45 years of age. Hypertension is the most significant risk factor in all age groups and across all regions and both stroke subtypes. These risk factors should be identified and modified in early adulthood to prevent strokes in young individuals.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas , Hipertensión , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Adulto , Persona de Mediana Edad , Estudios de Casos y Controles , Consumo Excesivo de Bebidas Alcohólicas/complicaciones , Accidente Cerebrovascular/complicaciones , Factores de Riesgo , Hipertensión/epidemiología
20.
Arterioscler Thromb Vasc Biol ; 42(4): 381-394, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35172604

RESUMEN

BACKGROUND: The intestine occupies the critical interface between cholesterol absorption and excretion. Surprisingly little is known about the role of de novo cholesterol synthesis in this organ, and its relationship to whole body cholesterol homeostasis. Here, we investigate the physiological importance of this pathway through genetic deletion of the rate-limiting enzyme. METHODS: Mice lacking 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr) in intestinal villus and crypt epithelial cells were generated using a Villin-Cre transgene. Plasma lipids, intestinal morphology, mevalonate pathway metabolites, and gene expression were analyzed. RESULTS: Mice with intestine-specific loss of Hmgcr were markedly smaller at birth, but gain weight at a rate similar to wild-type littermates, and are viable and fertile into adulthood. Intestine lengths and weights were greater relative to body weight in both male and female Hmgcr intestinal knockout mice. Male intestinal knockout had decreased plasma cholesterol levels, whereas fasting triglycerides were lower in both sexes. Lipidomics revealed substantial reductions in numerous nonsterol isoprenoids and sterol intermediates within the epithelial layer, but cholesterol levels were preserved. Hmgcr intestinal knockout mice also showed robust activation of SREBP-2 (sterol-regulatory element binding protein-2) target genes in the epithelium, including the LDLR (low-density lipoprotein receptor). At the cellular level, loss of Hmgcr is compensated for quickly after birth through a dramatic expansion of the stem cell compartment, which persists into adulthood. CONCLUSIONS: Loss of Hmgcr in the intestine is compatible with life through compensatory increases in intestinal absorptive surface area, LDLR expression, and expansion of the resident stem cell compartment.


Asunto(s)
Intestinos , Células Madre , Acilcoenzima A , Animales , Colesterol , Femenino , Masculino , Ratones , Esteroles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA