Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Psychooncology ; 32(6): 875-887, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37114280

RESUMEN

OBJECTIVE: The present review describes how children experience hereditary cancer risk communication within the family. METHODS: Searches for studies between 1990 and 2020 on PubMed and EBSCO were undertaken, and 15 studies met the inclusion criteria, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The findings informed: (1) how, when and what is discussed about hereditary cancer risk in the family; (2) how does family communication about hereditary cancer risk impact children on psychosocial and behavioral outcomes; (3) what are the child's preferences regarding hereditary cancer risk communication within the family. RESULTS: Disclosure is done mostly by both parents, or mothers only, which is in accordance with the children's preferences. Children value open communication about cancer risk with their parents, although they report experiences of fear, surprise, feeling unhappy, and concern about the increased risk of cancer. Regardless of the method of disclosure, children may be particularly sensitive to their parent's emotional state at the time of disclosure, and they learn from their parents' experiences the potential implications of cancer risk. Children also report that it would be helpful to learn more about genetic cancer syndromes via written materials, and/or meet a genetic counselor. CONCLUSIONS: Children rely on their parents as the primary models of the hereditary cancer experience. Therefore, parents play a central role in the psychological adjustment of children. Findings point to the relevance of family-centered care in hereditary cancer risk that targets not only the mutation carrier individually but also their children and partners.


Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias , Niño , Humanos , Padres/psicología , Comunicación , Revelación , Neoplasias/genética , Neoplasias/psicología
2.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834509

RESUMEN

Among the most common muscular dystrophies in adults is Myotonic Dystrophy type 1 (DM1), an autosomal dominant disorder characterized by myotonia, muscle wasting and weakness, and multisystemic dysfunctions. This disorder is caused by an abnormal expansion of the CTG triplet at the DMPK gene that, when transcribed to expanded mRNA, can lead to RNA toxic gain of function, alternative splicing impairments, and dysfunction of different signaling pathways, many regulated by protein phosphorylation. In order to deeply characterize the protein phosphorylation alterations in DM1, a systematic review was conducted through PubMed and Web of Science databases. From a total of 962 articles screened, 41 were included for qualitative analysis, where we retrieved information about total and phosphorylated levels of protein kinases, protein phosphatases, and phosphoproteins in DM1 human samples and animal and cell models. Twenty-nine kinases, 3 phosphatases, and 17 phosphoproteins were reported altered in DM1. Signaling pathways that regulate cell functions such as glucose metabolism, cell cycle, myogenesis, and apoptosis were impaired, as seen by significant alterations to pathways such as AKT/mTOR, MEK/ERK, PKC/CUGBP1, AMPK, and others in DM1 samples. This explains the complexity of DM1 and its different manifestations and symptoms, such as increased insulin resistance and cancer risk. Further studies can be done to complement and explore in detail specific pathways and how their regulation is altered in DM1, to find what key phosphorylation alterations are responsible for these manifestations, and ultimately to find therapeutic targets for future treatments.


Asunto(s)
Distrofia Miotónica , Animales , Adulto , Humanos , Distrofia Miotónica/genética , Fosforilación , Empalme Alternativo , ARN Mensajero/genética , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo
3.
Cell Mol Life Sci ; 78(21-22): 6807-6822, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34480585

RESUMEN

BRI2 is a type II transmembrane protein ubiquitously expressed whose physiological function remains poorly understood. Although several recent important advances have substantially impacted on our understanding of BRI2 biology and function, providing valuable information for further studies on BRI2. These findings have contributed to a better understanding of BRI2 biology and the underlying signaling pathways involved. In turn, these might provide novel insights with respect to neurodegeneration processes inherent to BRI2-related pathologies, namely Familial British and Danish dementias, Alzheimer's disease, ITM2B-related retinal dystrophy, and multiple sclerosis. In this review, we provided a state-of-the-art outline of BRI2 biology, both in physiological and pathological conditions, and discuss the proposed molecular underlying mechanisms. Overall, the BRI2 knowledge here reviewed is of extreme importance and may contribute to propose BRI2 and/or BRI2 proteolytic fragments as novel therapeutic targets for neurodegenerative diseases, such as Alzheimer's disease.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Proteolisis , Transducción de Señal/fisiología
4.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008948

RESUMEN

Myotonic dystrophy type 1 (DM1) is a hereditary and multisystemic disease characterized by myotonia, progressive distal muscle weakness and atrophy. The molecular mechanisms underlying this disease are still poorly characterized, although there are some hypotheses that envisage to explain the multisystemic features observed in DM1. An emergent hypothesis is that nuclear envelope (NE) dysfunction may contribute to muscular dystrophies, particularly to DM1. Therefore, the main objective of the present study was to evaluate the nuclear profile of DM1 patient-derived and control fibroblasts and to determine the protein levels and subcellular distribution of relevant NE proteins in these cell lines. Our results demonstrated that DM1 patient-derived fibroblasts exhibited altered intracellular protein levels of lamin A/C, LAP1, SUN1, nesprin-1 and nesprin-2 when compared with the control fibroblasts. In addition, the results showed an altered location of these NE proteins accompanied by the presence of nuclear deformations (blebs, lobes and/or invaginations) and an increased number of nuclear inclusions. Regarding the nuclear profile, DM1 patient-derived fibroblasts had a larger nuclear area and a higher number of deformed nuclei and micronuclei than control-derived fibroblasts. These results reinforce the evidence that NE dysfunction is a highly relevant pathological characteristic observed in DM1.


Asunto(s)
Biomarcadores , Fibroblastos/metabolismo , Membrana Nuclear/metabolismo , Núcleo Celular/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Espacio Intracelular/metabolismo , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Proteína Quinasa de Distrofia Miotónica/metabolismo , Proteínas Nucleares/metabolismo
5.
Public Health Nurs ; 39(4): 752-759, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34935199

RESUMEN

OBJECTIVE: There is still a lack of health indicators for monitoring and evaluating health planning at the local level. In Portugal, local health plans (LHP) include a prioritized set of health priorities, which should be monitored and evaluated. This study is an example of a low-resource method to identify and reuse indicators for LHP monitoring and evaluation already collected for other purposes. DESIGN AND SAMPLE: A modified Delphi consensus method was applied, with three rounds of email rating questionnaires and a final meeting, between January 2018 and January 2019. The Delphi panel consisted of eight members from the Planning and Administration Group of the Espinho/Gaia Local Public Health Unit. MEASUREMENTS: Panelists were asked to assess the indicators' validity for monitoring diseases/determinants from a pre-selected list of potential binomials between 140 PHC indicators and 15 diseases/determinants. RESULTS: After four rounds, there was consensus in considering 141 binomials (34.0%) as appropriate, diabetes mellitus being the disease with more appropriate indicators. CONCLUSION: This study portrays the applicability of a commonly used, easy and low-resource method in a Portuguese Local Public Health Unit to select and reuse primary health care indicators for LHP monitoring and evaluation.


Asunto(s)
Planificación en Salud , Indicadores de Calidad de la Atención de Salud , Consenso , Técnica Delphi , Humanos , Encuestas y Cuestionarios
6.
Mol Ecol ; 30(13): 3221-3238, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32860303

RESUMEN

DNA metabarcoding from the ethanol used to store macroinvertebrate bulk samples is a convenient methodological option in molecular biodiversity assessment and biomonitoring of aquatic ecosystems, as it preserves specimens and reduces problems associated with sample sorting. However, this method may be affected by errors and biases, which need to be thoroughly quantified before it can be mainstreamed into biomonitoring programmes. Here, we used 80 unsorted macroinvertebrate samples collected in Portugal under a Water Framework Directive monitoring programme, to compare community diversity and taxonomic composition metrics estimated through morphotaxonomy versus metabarcoding from storage ethanol using three markers (COI-M19BR2, 16S-Inse01 and 18S-Euka02) and a multimarker approach. A preliminary in silico analysis showed that the three markers were adequate for the target taxa, with detection failures related primarily to the lack of adequate barcodes in public databases. Metabarcoding of ethanol samples retrieved far less taxa per site (alpha diversity) than morphotaxonomy, albeit with smaller differences for COI-M19BR2 and the multimarker approach, while estimates of taxa turnover (beta diversity) among sites were similar across methods. Using generalized linear mixed models, we found that after controlling for differences in read coverage across samples, the probability of detection of a taxon was positively related to its proportional abundance, and negatively so to the presence of heavily sclerotized exoskeleton (e.g., Coleoptera). Overall, using our experimental protocol with different template dilutions, the COI marker showed the best performance, but we recommend the use of a multimarker approach to detect a wider range of taxa in freshwater macroinvertebrate samples. Further methodological development and optimization efforts are needed to reduce biases associated with body armouring and rarity in some macroinvertebrate taxa.


Asunto(s)
Código de Barras del ADN Taxonómico , Ecosistema , Sesgo , Biodiversidad , Agua Dulce , Portugal
7.
Int J Mol Sci ; 22(7)2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916438

RESUMEN

Anti-angiogenic therapy is an old method to fight cancer that aims to abolish the nutrient and oxygen supply to the tumor cells through the decrease of the vascular network and the avoidance of new blood vessels formation. Most of the anti-angiogenic agents approved for cancer treatment rely on targeting vascular endothelial growth factor (VEGF) actions, as VEGF signaling is considered the main angiogenesis promotor. In addition to the control of angiogenesis, these drugs can potentiate immune therapy as VEGF also exhibits immunosuppressive functions. Despite the mechanistic rational that strongly supports the benefit of drugs to stop cancer progression, they revealed to be insufficient in most cases. We hypothesize that the rehabilitation of old drugs that interfere with mechanisms of angiogenesis related to tumor microenvironment might represent a promising strategy. In this review, we deepened research on the molecular mechanisms underlying anti-angiogenic strategies and their failure and went further into the alternative mechanisms that impact angiogenesis. We concluded that the combinatory targeting of alternative effectors of angiogenic pathways might be a putative solution for anti-angiogenic therapies.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Proteínas de Neoplasias/metabolismo , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Microambiente Tumoral/efectos de los fármacos
8.
Molecules ; 26(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34770818

RESUMEN

Studying aging is important to further understand the molecular mechanisms underlying this physiological process and, ideally, to identify a panel of aging biomarkers. Animals, in particular mice, are often used in aging studies, since they mimic important features of human aging, age quickly, and are easy to manipulate. The present work describes the use of Fourier Transform Infrared (FTIR) spectroscopy to identify an age-related spectroscopic profile of the cardiac and skeletal muscle tissues of C57BL/6J female mice. We acquired ATR-FTIR spectra of cardiac and skeletal muscle at four different ages: 6; 12; 17 and 24 months (10 samples at each age) and analyzed the data using multivariate statistical tools (PCA and PLS) and peak intensity analyses. The results suggest deep changes in protein secondary structure in 24-month-old mice compared to both tissues in 6-month-old mice. Oligomeric structures decreased with age in both tissues, while intermolecular ß-sheet structures increased with aging in cardiac muscle but not in skeletal muscle. Despite FTIR spectroscopy being unable to identify the proteins responsible for these conformational changes, this study gives insights into the potential of FTIR to monitor the aging process and identify an age-specific spectroscopic signature.


Asunto(s)
Envejecimiento , Miocardio/citología , Proteínas/análisis , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Conformación Proteica en Lámina beta , Proteínas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
9.
Adv Exp Med Biol ; 1219: 143-159, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32130698

RESUMEN

Effective therapies to fight cancer should not be focused specifically on cancer cells, but it should consider the various components of the TME. Non-cancerous cells cooperate with cancer cells by sharing signaling and organic molecules, accounting for cancer progression. Most of the anti-angiogenic therapy clinically approved for the treatment of human diseases relies on targeting vascular endothelial growth factor (VEGF) signaling pathway. Unexpectedly and unfortunately, the results of anti-angiogenic therapies in the treatment of human diseases are not so effective, showing an insufficient efficacy and resistance.This chapter will give some insights on showing that targeting endothelial cell metabolism is a missing piece to revolutionize cancer therapy. Only recently endothelial cell (EC) metabolism has been granted as an important inducer of angiogenesis. Metabolic studies in EC demonstrated that targeting EC metabolism can be an alternative to overcome the failure of anti-angiogenic therapies. Hence, it is urgent to increase the knowledge on how ECs alter their metabolism during human diseases, in order to open new therapeutic perspectives in the treatment of pathophysiological angiogenesis, as in cancer.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Inhibidores de la Angiogénesis/uso terapéutico , Humanos , Neoplasias/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Microsc Microanal ; 25(1): 221-228, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30246678

RESUMEN

TorsinA is a member of the AAA+ superfamily of adenosine triphosphatases. These AAA+ proteins have numerous biological functions, including vesicle fusion, cytoskeleton dynamics, intracellular trafficking, protein folding, and degradation as well as organelle biogenesis. Of particular interest is torsinA, which is mainly located in the endoplasmic reticulum (ER) and nuclear envelope (NE). Interestingly, mutations in the TOR1A gene (the gene encoding torsinA) are associated with DYT1 dystonia and with the preferential localization of mutated torsinA at the NE, where it is associated with lamina-associated polypeptide 1. A bioinformatics study of the torsinA interactome revealed reproductive processes to be highly relevant, as proteins in this class were found to interact with the former. Interestingly, the torsin protein family had never been previously described to be associated with the mammalian spermatogenic process. Histological staining of torsinA in human testis tissue revealed a granular cytoplasmic localization in mid- and late spermatocytes. We further sought to understand this newly discovered expression of torsinA in the meiotic phase of human spermatogenesis by studying its specific subcellular distribution. TorsinA is not present in the ER as commonly described. The proposal that torsinA might relocate to the pro-acrosomal vesicles in the Golgi apparatus is discussed.


Asunto(s)
Chaperonas Moleculares/metabolismo , Transporte de Proteínas , Espermatogénesis/fisiología , Anciano de 80 o más Años , Animales , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Masculino , Chaperonas Moleculares/genética , Mutación , Membrana Nuclear/metabolismo , Neoplasias de la Próstata , Testículo/patología
11.
J Cell Biochem ; 118(9): 2752-2763, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28176357

RESUMEN

BRI2 is a ubiquitously expressed type II transmembrane phosphoprotein. BRI2 undergoes proteolytic processing into secreted fragments and during the maturation process it suffers post-translational modifications. Of particular relevance, BRI2 is a protein phosphatase 1 (PP1) interacting protein, where PP1 is able to dephosphorylate the former. Further, disruption of the BRI2:PP1 complex, using BRI2 PP1 binding motif mutants, leads to increased BRI2 phosphorylation levels. However, the physiological function of BRI2 remains elusive; although findings suggest a role in neurite outgrowth and neuronal differentiation. In the work here presented, BRI2 expression during neuronal development was investigated. This increases during neuronal differentiation and an increase in its proteolytic processing is also evident. To elucidate the importance of BRI2 phosphorylation for both proteolytic processing and neuritogenesis, SH-SY5Y cells were transfected with the BRI2 PP1 binding motif mutant constructs. For the first time, it was possible to show that BRI2 phosphorylation is an important regulatory mechanism for its proteolytic processing and its neuritogenic role. Furthermore, by modulating BRI2 processing using an ADAM10 inhibitor, a dual role for BRI2 in neurite outgrowth is suggested: phosphorylated full-length BRI2 appears to be important for the formation of neuritic processes, and BRI2 NTF promotes neurite elongation. This work significantly contributed to the understanding of the physiological function of BRI2 and its regulation by protein phosphorylation. J. Cell. Biochem. 118: 2752-2763, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Diferenciación Celular , Glicoproteínas de Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Neuritas/metabolismo , Procesamiento Proteico-Postraduccional , Proteína ADAM10/antagonistas & inhibidores , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Línea Celular Tumoral , Humanos , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/genética , Fosforilación/genética , Proteína Fosfatasa 1/genética , Proteolisis , Ratas , Ratas Wistar
12.
Mol Cell Biochem ; 399(1-2): 143-53, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25323962

RESUMEN

Cell division in eukaryotes requires the disassembly of the nuclear envelope (NE) at the beginning of mitosis and its reassembly at the end of mitosis. These processes are complex and involve coordinated steps where NE proteins have a crucial role. Lamina-associated polypeptide 1 (LAP1) is an inner nuclear membrane protein that has been associated with cell cycle events. In support of this role, LAP1 has been implicated in the regulation of the NE reassembly and assembly of the mitotic spindle during mitosis. In this study, we demonstrated that LAP1 intracellular levels vary during the cell cycle in SH-SY5Y cells, and that LAP1 is highly phosphorylated during mitosis. It is also clear that LAP1 co-localized with acetylated α-tubulin in the mitotic spindle and with γ-tubulin in centrosomes (main microtubule organizing center) in mitotic cells. Moreover, LAP1 knockdown resulted in decreased number of mitotic cells and decreased levels of acetylated α-tubulin (marker of microtubules stability) and lamin B1. Additionally, it was possible to determine that LAP1 is important for centrosome positioning near the NE. These findings place LAP1 at a key position to participate in the maintenance of the NE structure and progression of the cell cycle.


Asunto(s)
Proteínas del Choque Térmico HSC70/fisiología , Membrana Nuclear/metabolismo , Ciclo Celular , Línea Celular , Centrosoma/metabolismo , Humanos , Centro Organizador de los Microtúbulos/metabolismo , Membrana Nuclear/ultraestructura , Transporte de Proteínas , Tubulina (Proteína)/metabolismo
13.
BMC Psychiatry ; 15: 246, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26467432

RESUMEN

BACKGROUND: The aim of this study was to develop and validate a Portuguese version of The Subjective Experiences of Psychosis Scale (SEPS) for use in Portuguese-speaking populations in order to provide a self-report instrument to assess and monitor dimensions of psychotic experiences, translating patient's perspective and experience in terms of recovery from psychosis. METHODS: The sample consisted of 30 participants with psychotic disorders who had recently experienced delusions or hallucinations. The SEPS was completed along with other observer-based assessments and self-report questionnaires, such as the Brief Psychiatric Rating Scale, the Insight and Treatment Attitudes Questionnaire and the Function Assessment Short Test. RESULTS: Two main factors representing the positive and negative components of each subscale were identified. We obtained good internal consistency and test-retest reliability for the positive and negative components of all subscales. The subscales of SEPS correlated with observer-based assessments and self-report questionnaires. CONCLUSIONS: The Portuguese version of the SEPS is a useful tool in the assessment and monitoring of psychotic symptoms.


Asunto(s)
Escalas de Valoración Psiquiátrica/normas , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/psicología , Traducciones , Adulto , Femenino , Humanos , Masculino , Portugal , Psicometría , Reproducibilidad de los Resultados , Autoinforme , Adulto Joven
14.
Nucleic Acids Res ; 41(5): 2881-93, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23325844

RESUMEN

Histone H3 of nucleosomes positioned on active genes is trimethylated at Lys36 (H3K36me3) by the SETD2 (also termed KMT3A/SET2 or HYPB) methyltransferase. Previous studies in yeast indicated that H3K36me3 prevents spurious intragenic transcription initiation through recruitment of a histone deacetylase complex, a mechanism that is not conserved in mammals. Here, we report that downregulation of SETD2 in human cells leads to intragenic transcription initiation in at least 11% of active genes. Reduction of SETD2 prevents normal loading of the FACT (FAcilitates Chromatin Transcription) complex subunits SPT16 and SSRP1, and decreases nucleosome occupancy in active genes. Moreover, co-immunoprecipitation experiments suggest that SPT16 is recruited to active chromatin templates, which contain H3K36me3-modified nucleosomes. Our results further show that within minutes after transcriptional activation, there is a SETD2-dependent reduction in gene body occupancy of histone H2B, but not of histone H3, suggesting that SETD2 coordinates FACT-mediated exchange of histone H2B during transcription-coupled nucleosome displacement. After inhibition of transcription, we observe a SETD2-dependent recruitment of FACT and increased histone H2B occupancy. These data suggest that SETD2 activity modulates FACT recruitment and nucleosome dynamics, thereby repressing cryptic transcription initiation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/fisiología , Nucleosomas/metabolismo , Iniciación de la Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Cinética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Unión Proteica , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/genética , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética , Activación Transcripcional , Transcriptoma
15.
Mol Neurobiol ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38816676

RESUMEN

The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.

16.
Cells ; 13(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38391918

RESUMEN

BACKGROUND: Cancer-associated thrombosis (CAT) and venous thromboembolism (VTE) are frequent cancer-related complications associated with high mortality; thus, this urges the identification of predictive markers. Immune checkpoint inhibitors (ICIs) used in cancer immunotherapy allow T-cell activation against cancer cells. Retrospective studies showed increased VTE following ICI administration in some patients. Non-small cell lung cancer (NSCLC) patients are at high risk of thrombosis and thus, the adoption of immunotherapy, as a first-line treatment, seems to be associated with coagulation-fibrinolysis derangement. METHODS: We pharmacologically modulated NSCLC cell lines in co-culture with CD8+ T-cells (TCD8+) and myeloid-derived suppressor cells (MDSCs), isolated from healthy blood donors. The effects of ICIs Nivolumab and Ipilimumab on NSCLC cell death were assessed by annexin V and propidium iodide (PI) flow cytometry analysis. The potential procoagulant properties were analyzed by in vitro clotting assays and enzyme-linked immunosorbent assays (ELISAs). The metabolic remodeling induced by the ICIs was explored by 1H nuclear magnetic resonance (NMR) spectroscopy. RESULTS: Flow cytometry analysis showed that TCD8+ and ICIs increase cell death in H292 and PC-9 cells but not in A549 cells. Conditioned media from NSCLC cells exposed to TCD8+ and ICI induced in vitro platelet aggregation. In A549, Podoplanin (PDPN) levels increased with Nivolumab. In H292, ICIs increased PDPN levels in the absence of TCD8+. In PC-9, Ipilimumab decreased PDPN levels, this effect being rescued by TCD8+. MDSCs did not interfere with the effect of TCD8+ in the production of TF or PDPN in any NSCLC cell lines. The exometabolome showed a metabolic remodeling in NSCLC cells upon exposure to TCD8+ and ICIs. CONCLUSIONS: This study provides some insights into the interplay of immune cells, ICIs and cancer cells influencing the coagulation status. ICIs are important promoters of coagulation, benefiting from TCD8+ mediation. The exometabolome analysis highlighted the relevance of acetate, pyruvate, glycine, glutamine, valine, leucine and isoleucine as biomarkers. Further investigation is needed to validate this finding in a cohort of NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Trombosis , Tromboembolia Venosa , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Linfocitos T CD8-positivos/patología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ipilimumab/uso terapéutico , Neoplasias Pulmonares/patología , Nivolumab/farmacología , Nivolumab/uso terapéutico , Estudios Retrospectivos
17.
Biochem Biophys Rep ; 39: 101757, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39035020

RESUMEN

Lamina-associated polypeptide 1 (LAP1), a ubiquitously expressed nuclear envelope protein, appears to be essential for the maintenance of cell homeostasis. Although rare, mutations in the human LAP1-encoding TOR1AIP1 gene cause severe diseases and can culminate in the premature death of affected individuals. Despite there is increasing evidence of the pathogenicity of TOR1AIP1 mutations, the current knowledge on LAP1's physiological roles in humans is limited; hence, investigation is required to elucidate the critical functions of this protein, which can be achieved by uncovering the molecular consequences of LAP1 depletion, a topic that remains largely unexplored. In this work, the proteome of patient-derived LAP1-deficient fibroblasts carrying a pathological TOR1AIP1 mutation (LAP1 E482A) was quantitatively analyzed to identify global changes in protein abundance levels relatively to control fibroblasts. An in silico functional enrichment analysis of the mass spectrometry-identified differentially expressed proteins was also performed, along with additional in vitro functional assays, to unveil the biological processes that are potentially dysfunctional in LAP1 E482A fibroblasts. Collectively, our findings suggest that LAP1 deficiency may induce significant alterations in various cellular activities, including DNA repair, messenger RNA degradation/translation, proteostasis and glutathione metabolism/antioxidant response. This study sheds light on possible new functions of human LAP1 and could set the basis for subsequent in-depth mechanistic investigations. Moreover, by identifying deregulated signaling pathways in LAP1-deficient cells, our work may offer valuable molecular targets for future disease-modifying therapies for TOR1AIP1-associated nuclear envelopathies.

18.
Int J Biol Macromol ; 261(Pt 2): 129577, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246459

RESUMEN

Biological cryopreservation often involves using a cryoprotective agent (CPA) to mitigate lethal physical stressors cells endure during freezing and thawing, but effective CPA concentrations are cytotoxic. Hence, natural polysaccharides have been studied as biocompatible alternatives. Here, a subset of 26 natural polysaccharides of various chemical composition was probed for their potential in enhancing the metabolic post-thaw viability (PTV) of cryopreserved Vero cells. The best performing cryoprotective polysaccharides contained significant fucose amounts, resulting in average PTV 2.8-fold (up to 3.1-fold) compared to 0.8-fold and 2.2-fold for all non-cryoprotective and cryoprotective polysaccharides, respectively, outperforming the optimized commercial CryoStor™ CS5 formulation (2.6-fold). Stoichiometrically, a balance between fucose (18-35.7 mol%), uronic acids (UA) (13.5-26 mol%) and high molecular weight (MW > 1 MDa) generated optimal PTV. Principal component analysis (PCA) revealed that fucose enhances cell survival by a charge-independent, MW-scaling mechanism (PC1), drastically different from the charge-dominated ice growth disruption of UA (PC2). Its neutral nature and unique properties distinguishable from other neutral monomers suggest fucose may play a passive role in conformational adaptability of polysaccharide to ice growth inhibition, or an active role in cell membrane stabilization through binding. Ultimately, fucose-rich anionic polysaccharides may indulge in polymer-ice and polymer-cell interactions that actively disrupt ice and minimize lethal volumetric fluctuations due to a balanced hydrophobic-hydrophilic character. Our research showed the critical role neutral fucose plays in enhancing cellular cryopreservation outcomes, disputing previous assumptions of polyanionicity being the sole governing predictor of cryoprotection.


Asunto(s)
Fucosa , Hielo , Animales , Chlorocebus aethiops , Fucosa/metabolismo , Células Vero , Congelación , Crioprotectores/farmacología , Crioprotectores/química , Criopreservación/métodos , Polisacáridos/farmacología , Polímeros/farmacología , Supervivencia Celular
19.
Biodivers Data J ; 12: e118010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784157

RESUMEN

Background: The InBIO Barcoding Initiative (IBI) Orthoptera dataset contains records of 420 specimens covering all the eleven Orthoptera families occurring in Portugal. Specimens were collected in continental Portugal from 2005 to 2021 and were morphologically identified to species level by taxonomists. A total of 119 species were identified corresponding to about 77% of all the orthopteran species known from continental Portugal. New information: DNA barcodes of 54 taxa were made public for the first time at the Barcode of Life Data System (BOLD). Furthermore, the submitted sequences were found to cluster in 129 BINs (Barcode Index Numbers), 35 of which were new additions to the Barcode of Life Data System (BOLD). All specimens have their DNA barcodes publicly accessible through BOLD online database. Stenobothruslineatus is recorded for the first time for continental Portugal. This dataset greatly increases the knowledge on the DNA barcodes and distribution of Orthoptera from Portugal. All DNA extractions and most specimens are deposited in the IBI collection at CIBIO, Research Center in Biodiversity and Genetic Resources.

20.
Biosci Rep ; 44(7)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38990147

RESUMEN

Lung cancer ranks as the predominant cause of cancer-related mortalities on a global scale. Despite progress in therapeutic interventions, encompassing surgical procedures, radiation, chemotherapy, targeted therapies and immunotherapy, the overall prognosis remains unfavorable. Imbalances in redox equilibrium and disrupted redox signaling, common traits in tumors, play crucial roles in malignant progression and treatment resistance. Cancer cells, often characterized by persistent high levels of reactive oxygen species (ROS) resulting from genetic, metabolic, and microenvironmental alterations, counterbalance this by enhancing their antioxidant capacity. Cysteine availability emerges as a critical factor in chemoresistance, shaping the survival dynamics of non-small cell lung cancer (NSCLC) cells. Selenium-chrysin (SeChry) was disclosed as a modulator of cysteine intracellular availability. This study comprehensively characterizes the metabolism of SeChry and investigates its cytotoxic effects in NSCLC. SeChry treatment induces notable metabolic shifts, particularly in selenocompound metabolism, impacting crucial pathways such as glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid metabolism. Additionally, SeChry affects the levels of key metabolites such as acetate, lactate, glucose, and amino acids, contributing to disruptions in redox homeostasis and cellular biosynthesis. The combination of SeChry with other treatments, such as glycolysis inhibition and chemotherapy, results in greater efficacy. Furthermore, by exploiting NSCLC's capacity to consume lactate, the use of lactic acid-conjugated dendrimer nanoparticles for SeChry delivery is investigated, showing specificity to cancer cells expressing monocarboxylate transporters.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Selenio , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Selenio/metabolismo , Selenio/farmacología , Metabolómica , Línea Celular Tumoral , Células A549 , Especies Reactivas de Oxígeno/metabolismo , Flavonoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA