Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cytometry A ; 103(6): 528-536, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36602043

RESUMEN

Water buffalo (Bubalus bubalis) has a prominent position in the livestock industry worldwide but still suffers from limited knowledge on the mechanisms regulating the immune against infections, including brucellosis (BRC), one of the most significant neglected zoonotic diseases of livestock. Seventy-three buffalo were recruited for the study. Thirty-five were naturally infected with Brucella spp. The aims of the study were to (i) verify the cross-reactivity of 16 monoclonal antibodies (mAbs) developed against human, bovine, and ovine antigens; (ii) evaluate lymphocyte subset alterations in BRC positive buffalo; (iii) evaluate the use of the canonical discriminant analysis (CDA), with flow cytometric data, to discriminate BRC positive from negative animals. A new set of eight mAbs (anti CD3e, CD16, CD18, CD45R0, CD79a; CD172a) were shown to cross-react with water buffalo orthologous molecules. BRC positive animals presented a significant (p < 0.0001) decrease in the percentage of PBMC (29.5 vs. 40.3), total, T and B lymphocytes (23.0 vs. 35.5, 19.2 vs. 28.9, 2.6 vs. 5.7, respectively). In contrast, they showed an increase in percentage of granulocytes (65.2 vs. 55.1; p < 0.0001) and B lymphocytes CD21neg (22.9 vs. 16.1; p = 0.0067), a higher T/B lymphocyte ratio (10.3 vs. 6.4; p = 0.0011) and CD3+ /CD21+ (14.7 vs. 8.3; p = 0.0005) ratio. The CDA, applied to 33 different flow cytometric traits, allowed the discrimination of all BRC positive from negative buffalo. Although this is a preliminary study, our results show that flow cytometry can be used in a wide range of applications in livestock diseases, including in support of uncertain BRC diagnoses.


Asunto(s)
Brucelosis , Búfalos , Animales , Ovinos , Bovinos , Humanos , Inmunofenotipificación , Leucocitos Mononucleares , Brucelosis/diagnóstico , Subgrupos Linfocitarios
2.
Vet Res ; 54(1): 44, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277883

RESUMEN

Bubaline alphaherpesvirus 1 (BuHV-1) is a pathogen of water buffaloes responsible for economic loss worldwide. MicroRNAs (miRNAs) regulate gene expression produced by alphaherpesviruses and hosts. This study aimed at (a) unravelling the ability of BuHV-1 to produce miRNAs, including hv1-miR-B6, hv1-miR-B8, hv1-miR-B9; (b) measuring the host immune-related miRNAs associated to herpesvirus infection, including miR-210-3p, miR-490-3p, miR-17-5p, miR-148a-3p, miR-338-3p, miR-370-3p, by RT-qPCR; (c) identifying candidate markers of infection by receiver-operating characteristic (ROC) curves; (d) exploiting the biological functions by pathway enrichment analyses. Five water buffaloes BuHV-1 and Bovine alphaherpesvirus 1 (BoHV-1) free were immunized against Infectious Bovine Rhinotracheitis (IBR). Five additional water buffaloes served as negative controls. All animals were challenged with a virulent wild-type (wt) BuHV-1 via the intranasal route 120 days after the first vaccination. Nasal swabs were obtained at days (d) 0, 2, 4, 7, 10, 15, 30, and 63 post-challenge (pc). The animals of both groups shed wt BuHV-1 up to d7 pc. Results demonstrated that (a) miRNAs produced by the host and BuHV-1 could be efficiently quantified in the nasal secretion up to d63 and d15 pc, respectively; b) the levels of host and BuHV-1 miRNAs are different between vaccinated and control buffaloes; c) miR-370-3p discriminated vaccinated and control animals; d) host immune-related miRNAs may modulate genes involved in the cell adhesion pathway of the neuronal and immune system. Overall, the present study provides evidence that miRNAs can be detected in nasal secretions of water buffaloes and that their expression is modulated by BuHV-1.


Asunto(s)
Alphaherpesvirinae , Enfermedades de los Bovinos , Infecciones por Herpesviridae , Herpesvirus Bovino 1 , MicroARNs , Bovinos , Animales , Búfalos , MicroARNs/genética , Herpesvirus Bovino 1/fisiología , Infecciones por Herpesviridae/veterinaria , Perfilación de la Expresión Génica/veterinaria
3.
Cytometry A ; 101(2): 122-130, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34382742

RESUMEN

Monocytes are bone marrow derived innate myeloid cells that circulate in the blood and play important roles in infection and inflammation. As part of the mononuclear phagocytic system, monocytes provide innate effector functions, support the adaptive immune response, and play a role in the maintenance of tissue homeostasis. In addition to their role in sensing pathogen-associated molecular patterns using several pattern recognition receptors, monocytes are characterized by their ability to ingest and kill microbes, to produce cytokines and chemokines, and to present antigens to T cells. For a long time, monocytes have been considered as a homogenous cell population, characterized by the expression of CD14, the receptor of lipopolysaccharide. Studies in several species have shown that the monocyte population consists of phenotypically and functionally different cell subsets. In this review, we report a comprehensive phenotyping of monocyte subsets in cattle. In addition, the most characterizing cell markers and gating strategies for detailed immunophenotyping of bovine monocyte subsets are discussed.


Asunto(s)
Receptores de Lipopolisacáridos , Monocitos , Animales , Bovinos , Citometría de Flujo , Inmunofenotipificación , Inflamación/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Monocitos/metabolismo , Receptores de IgG , Linfocitos T
4.
Trop Anim Health Prod ; 53(2): 250, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33825069

RESUMEN

Tuberculosis (TB) is a zoonotic disease primarily caused by pathogens belonging to the genus of Mycobacterium. Programs of control and eradication for bovine TB include a screening using single intradermal tuberculin (SIT) test with Mycobacterium bovis (M. bovis)-purified protein derivatives (PPD-B) single or concurrent with Mycobacterium avium (M. avium)-purified protein derivatives (PPD-A). This study aimed to determine the effects of intradermal PPD-B and PPD-A test on immune-related mRNA and microRNAs in dermal oedema exudates of water buffaloes (Bubalus bubalis). The investigation was carried out on RNA extracted from dermal oedema exudates of 36 animals, of which 24 were M. bovis positive (M. bovis+) and 12 M. avium positive (M. avium+). The lymphocyte polarization toward Th1, Th2, TReg, and Th17 lineages was addressed by measuring the abundance of the respective cytokines and transcription factors, namely TBET, STAT4, IFNγ, and IL1ß for Th1; STAT5B, and IL4 for Th2; FOXP3 and IL10 for TReg; and RORC, STAT3, and IL17A for Th17. Due to the very low abundance of Th17-related genes, a digital PCR protocol was also applied. The abundance of microRNAs involved in the immune response against PPDs, including miR-122-5p, miR-148a-3p, miR30a, and miR-455-5p, was equally measured. Results showed that IFNγ (fold change = 2.54; p = 0.037) and miR-148a-3p (fold change = 2.54; p = 0.03) were upregulated in M. bovis+ as compared to M. avium+ samples. Our preliminary results supported the pivotal role of IFNγ in the local immune response related to PPD-B and highlighted the differential expression of miR-148a-3p, which downregulates the proinflammatory cytokines and the TLR4-mediated NF-κB activation, providing an anti-inflammation modulator in responses to mycobacterial infection.


Asunto(s)
Enfermedades de los Bovinos , MicroARNs , Mycobacterium bovis , Tuberculosis Bovina , Animales , Búfalos , Bovinos , Edema/veterinaria , Exudados y Transudados , MicroARNs/genética , ARN Mensajero/genética , Tuberculina , Prueba de Tuberculina/veterinaria
5.
J Dairy Sci ; 102(8): 7476-7482, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31178197

RESUMEN

The concept that ruminant mammary gland quarters are anatomically and physiologically unrelated has been recently challenged by immunological evidence. How this interdependence reflects on individual quarter milk microbiota is unknown. The aim of the present study was to cover this gap by investigating the interdependence of quarters among the same mammary gland at the milk microbiota level using next-generation sequencing of the V4-16S rRNA gene. A total of 52 samples were included in this study and classified as healthy or affected by subclinical mastitis. Extraction of DNA, amplification of the V4-16S rRNA gene, and sequencing using Ion Torrent Personal Genome Machine (Thermo Fisher Scientific, Waltham, MA) were carried out. We found that the intra-individual variability was lower than the inter-individual one. The present findings further support at milk microbiota level the hypothesis of the interdependence of quarters, as previously demonstrated following immunological studies, suggesting that individual factors (e.g., immunity, genetics) may have a role in modulating milk microbiota.


Asunto(s)
Glándulas Mamarias Animales/microbiología , Mastitis Bovina/microbiología , Microbiota , Animales , Búfalos/genética , Bovinos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Glándulas Mamarias Animales/inmunología , Mastitis Bovina/inmunología , Leche , ARN Ribosómico 16S
6.
Trop Anim Health Prod ; 45(8): 1697-702, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23712396

RESUMEN

Growth, weight at birth and daily weight gain (DWG) on 12 water buffalo calves, starting from 6 days of age until completion of weaning, was investigated in this study. Different feeding regimens were given to two groups of animals with regard to daily milk replacer: (1) group 1 (G1) received a double concentration in single administration; whereas (2) group 2 (G2) received the same amount of milk replacer split twice daily. Blood samples were collected from each calf on days 6, 30, 60 and 90 to evaluate acute phase proteins (haptoglobin), bactericide activity, lysozime, total protein content and biochemical parameters. No differences were observed between the two groups in terms of dry matter intake, feed efficiency and live body weight at the end of the study. Interestingly, a significantly (P < 0.05) reduced DWG was observed earlier in G1 (day 45) than in G2 (day 60). Gastrointestinal disorders were not recorded throughout the experimental period, and no significant differences were recorded between the two groups for all considered parameters. This study confirms the possibility of utilising one daily administration of milk replacer in water buffalo calf during weaning. This new approach facilitates calves management, without interfering with calves growing performances.


Asunto(s)
Búfalos/fisiología , Leche/metabolismo , Animales , Animales Lactantes , Peso Corporal , Búfalos/sangre , Búfalos/crecimiento & desarrollo , Búfalos/metabolismo , Ingestión de Alimentos , Heces/química , Femenino , Haptoglobinas/metabolismo , Italia , Leucocitos Mononucleares/metabolismo , Muramidasa/sangre
7.
Vet Res Commun ; 47(3): 1741-1748, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36624357

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) emerged in late December 2019 and spread worldwide, quickly becoming a pandemic. This zoonotic coronavirus shows a broad host range, including wildlife and domestic animals. Small ruminants are shown to be susceptible to SARS-CoV-2 but, to date, no natural infection has been reported. Herein, we performed a survey for SARS-CoV-2 among sheep and goats in the Campania region of Italy using an indirect multispecies ELISA. Next, positive sera were submitted to virus serum neutralization for the quantification of specific neutralizing antibodies. Out of 612 sheep and goats, 23 were found ELISA positive (3.75%) and 1 of them showed 1:20 neutralizing antibodies titer. No significant difference was found between the two species, as well as between male and female, geographical location and age. Our findings demonstrate that natural infection can occur in flocks in a field situation. Moreover, low susceptibility to SARS-CoV-2 is reported for sheep and goats, nevertheless, the continuous mutations of this virus open new scenarios on viral host range and tropism, highlighting the importance of investigating animal species that could represent ongoing or future possible hosts.


Asunto(s)
COVID-19 , Enfermedades de las Cabras , Enfermedades de las Ovejas , Animales , Ovinos , Masculino , Femenino , SARS-CoV-2 , COVID-19/veterinaria , Rumiantes , Cabras , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Enfermedades de las Ovejas/epidemiología
8.
Vaccines (Basel) ; 11(5)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37242994

RESUMEN

European regulations on the control of infectious diseases provide measures to control Bovine alphaherpesvirus 1 (BoHV-1) infection in both cattle and buffalo. Owing to the reported serological cross-reactivity between BoHV-1 and Bubaline alphaherpesvirus 1 (BuHV-1), we hypothesized a new immunization protocol using BoHV-1 gE-deleted marker vaccines could protect water buffalo against BuHV-1. Five water buffaloes devoid of BoHV-1/BuHV-1-neutralizing antibodies were immunized with two commercial BoHV-1 gE-deleted marker vaccines at 0, 30, 210, and 240 post-vaccination days (PVDs). Five additional water buffaloes were used as controls. At 270 PVD (0 post-challenge days (PCDs), all animals were challenged intranasally with wild-type (wt) BuHV-1. The vaccinated animals produced humoral immunity (HI) as early as PVD 30 whereas, in control animals, antibodies were detected on PCD 10. After challenge infection, HI significantly increased in vaccinated animals compared to that in controls. Real-time PCR for gB revealed viral shedding in vaccinated animals from PCDs 2 to 10. In contrast, positive results were observed from PCDs 2 to 15 in the unvaccinated control group. Although the findings indicated the possible protection capabilities of the tested protocol, these findings did not support its protective roles in water buffaloes against wt-BuHV-1.

9.
Tuberculosis (Edinb) ; 139: 102327, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36857964

RESUMEN

Tuberculosis has a negative economic impact on buffalo farming, and it poses a potential threat to human health. Interferon-gamma (IFN-γ) plays a central role in protection against mycobacterial diseases, illustrating the importance of T-cell mediated immune responses in tuberculosis infection. Recently, the expression of Caspase-3, a critical executor of apoptosis, in M. tuberculosis-specific IFN-γ+CD4+ T cells was used as a new marker to distinguish active from latent tuberculosis infection in humans. The aims of this work were to develop a whole blood flow cytometric assay to detect the production of IFN-γ and the activation of Caspase-3 by CD4+ T lymphocytes from water buffalo and to evaluate whether these parameters can discriminate between healthy and M. bovis naturally infected buffaloes. A total of 35 Italian Mediterranean buffaloes were grouped in two groups: uninfected and M. bovis infected (based on the results of antemortem diagnostic tests: single intradermal tuberculin (SIT) and ELISA IFN-γ tests). Whole blood was incubated for 6 h with tubercular antigens: PPD-B, PPD-A, ESAT-6/CFP-10 and a new mix of precocious secreted antigens (PA). Our results showed a significant increase in the percentage of IFN-γ+CD4+ T cells in infected compared to the uninfected animals after each stimulus. Improved sensitivity of the assay was obtained by including the stimulation with the new mix of PA. Interestingly, we observed a concomitant decrease in percentage of Caspase-3+CD4+ T cells in M. bovis infected animals compared to the control healthy ones, regardless of the stimulus used. Overall, these results showed that M. bovis infection activates CD4+ T lymphocytes to produce IFN-γ and at the same time causes a concomitant decrease of Caspase-3 activation in CD4+ T cells. This study for the first time in water buffalo describes the development of a whole blood flow cytometric assay for the detection of IFN-γ producing CD4+ T cells and proposes the expression of active Caspase-3 as an additional bovine TB biomarker. Although further studies are needed to better understand the mechanisms of Caspase-3-mediated cell death during tuberculosis, our data can help to better understand the cellular immune response to M. bovis infection in buffalo species.


Asunto(s)
Tuberculosis Latente , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Animales , Humanos , Bovinos , Búfalos , Caspasa 3/metabolismo , Tuberculosis/microbiología , Interferón gamma/metabolismo , Tuberculosis Latente/microbiología , Linfocitos T CD4-Positivos , Tuberculina , Muerte Celular , Antígenos Bacterianos
10.
Vaccines (Basel) ; 11(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37766082

RESUMEN

Bubaline alphaherpesvirus-1 (BuAHV-1) and Bovine alphaherpesvirus-1 (BoAHV-1) are respiratory viruses that can cause an infection known as "Infectious Bovine Rhinotracheitis" (IBR) in both water buffalo and bovine species. As the main disease control strategy, vaccination can protect animals from clinical disease through the development of specific humoral and cell-mediated immune responses. In the present study, the time-related circulatory kinetics of hematological profile and bubaline monocyte subsets have been investigated in vaccinated buffalo calves after challenge infections with BuAHV-1. Thirteen buffalo calves were selected and grouped into the VAX-1 group, which received an IBR-live-attenuated gE-/tk-deleted marker vaccine; the VAX-2 group, which received an IBR-inactivated gE-deleted marker vaccine; the CNT group, which remained an unvaccinated control. Fifty-five days after the first vaccination, the animals were infected with 5 × 105.00 TCID50/mL of wild-type BuAHV-1 strain via the intranasal route. Whole blood samples were collected at 0, 2, 4, 7, 10, 15, 30, and 63 days post-challenge (PCDs) for the analysis of hematological profiles and the enumeration of monocyte subsets via flow cytometry. The analysis of leukocyte compositions revealed that neutrophils were the main leukocyte population, with a relative increase during the acute infection. On the other hand, a general decrease in the proportion of lymphocytes was observed early in the post-infection, both for the VAX-1 and VAX-2 groups, while in the CNT group, the decrease was observed later at +30 and +63 PCDs. An overall infection-induced increase in blood total monocytes was observed in all groups. The rise was especially marked in the animals vaccinated with an IBR-live-attenuated gE-/tK-deleted marker vaccine (VAX-1 group). A multicolor flow cytometry panel was used to identify the bubaline monocyte subpopulations (classical = cM; intermediate = intM; and non-classical = ncM) and to investigate their variations during BuAHV-1 infection. Our results showed an early increase in cMs followed by a second wave of intMs. This increase was observed mainly after stimulation with live-attenuated viruses in the VAX-1 group compared with the animals vaccinated with the inactivated vaccine or the non-vaccinated animal group. In summary, the present study characterized, for the first time, the hematological profile and distribution of blood monocyte subsets in vaccinated and non-vaccinated water buffalo in response to experimental infection with BuAHV-1. Although not experimentally proven, our results support the hypothesis of a linear developmental relationship between monocyte subsets.

11.
Animals (Basel) ; 12(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35203118

RESUMEN

Bisphenol A (BPA) and some of its analogues are well known as endocrine-disrupting chemicals (EDCs), i.e., compounds that can affect the physiological hormonal pathways in both animals and humans, causing adverse health effects. The intake of these substances through diet represents a public concern, compounded by the scarce data in the literature about contamination levels in food. In the framework of a research project, funded by the Italian Ministry of Health, we determined the contamination levels of BPA and 19 EDCs in the production chain of buffalo milk, analysing feed, drinking water, buffalo milk, and blood sera. Overall, 201 feed, 9 feed additive, 62 drinking water, 46 milk, and 190 blood serum samples were collected from 10 buffalo farms in the Campania region, Southern Italy, between 2019 and 2020, and analysed. Moreover, 15 retail bovine milk samples packaged both in Tetra Pak and in PET were analysed to further evaluate consumers' exposure to EDCs. The results of our work showed no contamination by EDCs in drinking water samples, whereas in 43% of all of the other samples from the farms at least one bisphenol was detected. The most abundant bisphenol detected was BPA (32% of the samples from the farms and 80% of the retail milk samples), thus proving that this compound is still widely used for plastic production.

12.
Vaccines (Basel) ; 10(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36016092

RESUMEN

Three commercially available infectious bovine rhinotracheitis (IBR) live marker vaccines were evaluated for their ability to provide clinical protection to vaccinated calves against wild-type (wt) Bovine alphaherpesvirus-1 (BoHV-1) challenge and their possible effect on wt BoHV-1 latency reactivation following the challenge. On 35 post-vaccination days (PVDs), all animals were challenged with wt BoHV-1. Only the calves in the control group developed severe forms of IBR. The reactivation of latent BoHV-1 was induced by dexamethasone (DMS) treatment on 28 post-challenge days (PCDs). All animals showed IBR clinical signs on three post-DMS treatment days (PDTDs). On PVD 14, all vaccinated animals developed neutralizing antibodies (NAs), whereas in control animals, the NAs appeared post-challenge. The positivity for glycoprotein-B (gB) was detected using real-time polymerase chain reactions in all animals from PCDs 1 to 7. In contrast, the gB-positivity was observed in the immunized calves from PDTDs 3 to 10. Positive expression of gD and gE was observed in nasal swabs of all calves on PDTD 7. These findings suggested that the IBR marker vaccines evaluated in this study protected against wt BoHV-1-induced disease but not against wt BoHV-1-induced latency reactivation, indicating the necessity of developing new products to protect animals from wt BoHV-1-induced latency.

13.
Vaccines (Basel) ; 9(4)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33917160

RESUMEN

Recent studies have explored the seropositivity of Bovine alphaherpesvirus 1 (BoHV-1) in water buffaloes, suggesting the urgency for developing strategies to eradicate the virus involving both cattle and water buffaloes. However, in Europe, the glycoprotein E (gE) deleted marker vaccines against BoHV-1 are commercially available only for the cattle industry. This study, for the first time, evaluated the safety and efficacy of a commercial inactivated gE-deleted marker vaccine in water buffalo. Five animals devoid of BoHV-1-neutralizing antibodies were vaccinated via intramuscular route. Five additional animals served as an unvaccinated control group. Sixty days after the first immunization, all animals were experimentally infected with a virulent BoHV-1via intranasal route. A detectable BoHV-1-humoral immune response was observed in the vaccinated group on post-vaccination day 30, whereas the antibodies appeared on post-challenge day 10 in the control group. Moreover, the vaccinated animals neither show viral shedding nor clinical signs compared to the control upon challenge. However, post-challenge, the BoHV-1-specific humoral and cell-mediated immune responses were significantly more increased in vaccinated animals than the control animals. Overall, the present study provides evidence of both the safety and efficacy of an inactivated gE-deleted marker vaccine against BoHV-1 in water buffaloes.

14.
Front Vet Sci ; 7: 563792, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33335916

RESUMEN

Bovine tuberculosis (bTB) is a worldwide zoonosis that affects many species of domestic and wild animals. Mycobaterium bovis is the main cause of infection in water buffalo (Bubalus bubalis) and bovines and is of great concern for human health and for buffalo producers in Italy. The bTB eradication programme is based on slaughterhouse surveillance and intradermal skin tests. Other in vivo diagnostic methods such as the interferon-gamma (IFN-γ) assay have been developed and are widely used in cattle to accelerate the elimination of bTB positive animals. The present study is the first to assess the use and performance of IFN-γ assays, which is used as an ancillary test for bTB diagnosis in water buffalo, and presents the results of a field-evaluation of the assay from 2012 to 2019 during the buffalo bTB eradication programme in Italy. The study involved 489 buffaloes with a positive result to the single intradermal tuberculin test (SITT). The IFN-γ assays and single intradermal comparative tuberculin test were used as confirmation tests. Then, a total of 458 buffaloes, reared on officially tuberculosis-free (OTF) herds, that were confirmed bTB-free for at least the last 6 years were subjected to IFN-γ testing. Furthermore, to evaluate the IFN-γ test in an OTF herd with Paratuberculosis (PTB) infection, 103 buffaloes were subjected to SITT and IFN-γ test simultaneously. Four interpretative criteria were used, and the IFN-γ test showed high levels of accuracy, with sensitivity levels between 75.3% (CI 95% 71.2-79.0%) and 98.4% (CI 95% 96.7-99.4%) and specificity levels between 94.3% (CI 95% 91.2-96.50%) and 98.5% (CI 95% 96.9-99.4%), depending on the criterion used. Finally, in the OTF herd with PTB infection, in buffalo, the IFN-γ test displayed high specificity values according to all 4 interpretative criteria, with specificity levels between 96.7% (CI 95% 88.4-99.5%) and 100% (CI 95% 96.2-100%), while SITT specificity proved unsatisfactory, with a level of 45.3% (CI 95% 35.0-55.7%). Our results showed that the IFN-γ test in the buffalo species could reach high Sensitivity and Specificity values, and that the level of Sensitivity and Specificity could be chosen based on the interpretative criterion and the antigens used depending on the health status of the herd and the epidemiological context of the territory. The IFN-γ test and the use of different interpretative criteria proved to be useful to implement bTB diagnostic strategies in buffalo herds, with the possibility of a flexible use of the assay.

15.
Front Vet Sci ; 7: 574434, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178728

RESUMEN

The identification of cross-reactive monoclonal antibodies (mAbs) that recognize orthologous leukocyte differentiation molecules (LDM) in buffaloes has overcome a major impediment limiting research on the immune response to pathogens and development of vaccines. As reported, two pilot trials were conducted to accomplish two objectives: (1) demonstrate that multiparameter flow cytometry can be conducted equally well in buffalo with mAbs directly and indirectly labeled with fluorochromes in research and (2) flow cytometry can be used to compare and extend studies on diseases of economic importance to buffalo using bovine viral diarrhea virus (BVDV) as a model pathogen. Pregnant buffalo cows were infected with BVDV-1 at 81 (trial 1) and 203 (trial 2) days post artificial insemination and flow cytometric evaluations were performed at 0, 3, 4, and 14 days after infection (dpi). Fluorochrome conjugated mAbs were used in trial 1, and fluorochrome conjugated goat isotype specific anti-mouse antibodies were used to label mAbs in trial 2. Flow cytometric analysis revealed a transient lymphopenia occurs during the 1st days following infection similar to lymphopenia reported in cattle. In particular, significant differences were observed between pre- and post-infection absolute values of T lymphocytes (-56%, P < 0.01). CD21+ B lymphocytes (-65%, P = 0.04), and Natural Killer cells (-72%, P < 0.001). No significant differences were observed in monocytes and neutrophil absolute values, or the CD4:CD8 ratio. Animal health status was followed until 15 days after calving. No clinical signs of infection were observed during the evaluation period, however, animals in trial 1 developed complications later the infection. One cow aborted at 57 days post-infection, the second cow developed a prolapse a day after calving and died. These two animals also showed a more pronounced lymphopenia in comparison with animals infected at 203 days of pregnancy (e.g., -77 vs. -22% T lymphocytes at 3 dpi, respectively). The pilot studies have demonstrated that it is possible to use multicolour multiparameter flow cytometry to study the immune response to pathogens affecting the health of buffalo.

16.
J Vet Diagn Invest ; 21(1): 137-40, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19139516

RESUMEN

Bovine viral diarrhea virus (BVDV) is an important pathogen that primarily infects ruminants, leading to several clinical problems including abortion. BVDV-specific antibodies were reported in a wide range of hosts within domestic and wildlife animal populations, and serological studies also indicated BVDV infection in buffaloes. The purpose of this study was to analyze the presence of BVDV in 2 water buffalo (Bubalus bubalis) herds with a history of abortion. Virus isolation from aborted fetuses and from maternal buffy coat and the molecular characterization of the isolates confirmed the presence of BVDV in these animals. The sequence analysis based on the 5' UTR and N(pro) coding regions of the Pestivirus genome revealed that the isolates belong to subgenotype 1b of BVDV. The findings of this study also suggest a possible role of BVDV in causing congenital infection in water buffalo. Its presence in fetal tissues as well as in maternal blood raises questions about the possible development of clinical disease or its influence in abortions in water buffalo.


Asunto(s)
Feto Abortado/virología , Aborto Veterinario/virología , Búfalos , Virus de la Diarrea Viral Bovina/aislamiento & purificación , Infecciones por Pestivirus/veterinaria , Animales , Virus de la Diarrea Viral Bovina/genética , Femenino , Italia/epidemiología , Infecciones por Pestivirus/epidemiología , Infecciones por Pestivirus/virología , Filogenia , Embarazo
17.
Sci Rep ; 9(1): 1945, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760784

RESUMEN

Brucellosis is an infectious disease caused by bacteria from the Brucella genus that can be transmitted to humans through contact with infected animals or contaminated animal products. Brucellosis also causes financial losses in animal production. Ruminants are highly susceptible to brucellosis, and the causative agent water buffaloes (Bubalus bubalis) is Brucella abortus. Circulating microRNAs (miRNAs) are cropping up as promising biomarkers for several infectious diseases. The goals of this study were to characterize the serum miRNA signature associated with brucellosis in water buffaloes and investigate the miRNAs' potential use as biomarkers in vaginal fluids. Next Generation Sequencing was used to assess miRNA expression profiles in Brucella-positive and Brucella-negative blood sera; dysregulated miRNAs in blood serum and vaginal fluids were validated using RT-qPCR. ROC curves were generated to evaluate the diagnostic value of miRNAs for Brucella. GO and KEGG pathway enrichment analyses were exploited to investigate the biological functions of dysregulated miRNAs. The results showed that 20 miRNAs were modulated, of which, 12 were upregulated and 8 were downregulated. These findings were corroborated by RT-qPCR, and ROC curves indicated that the miRNAs can serve as potential biomarkers for Brucella. GO and KEGG pathway analyses pointed out that some of these miRNAs are related to immune response and apoptosis. These results provided an overview of miRNA expression profiles and highlighted potential biomarkers for Brucella infection in water buffaloes. We also demonstrated the potential of vaginal fluids in studies involving microRNA detection. Further functional and mechanistic studies of these miRNAs may improve our understanding of the biological processes involved in Brucella infection and host immune response.


Asunto(s)
Brucelosis/genética , Búfalos/genética , MicroARN Circulante/análisis , Animales , Anticuerpos Antibacterianos/sangre , Biomarcadores/sangre , Secreciones Corporales , Líquidos Corporales , Brucella abortus/genética , Brucella abortus/patogenicidad , Brucelosis/diagnóstico , Brucelosis/microbiología , Búfalos/microbiología , MicroARN Circulante/genética , Ensayo de Inmunoadsorción Enzimática , MicroARNs/genética , Curva ROC
18.
PLoS One ; 14(1): e0210204, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30615691

RESUMEN

Water buffalo mastitis represents a major issue in terms of animal health, cost of therapy, premature culling and decreased milk yeld. The emergence of antibiotic resistance has led to investigate strategies to avoid or reduce antibiotics' based therapies, in particular during subclinical mastitis. The use of Generally Regarded As Safe bacteria (GRAS) such as Lactobacillus rhamnosus to restore the unbalance in mammary gland microbiota could provide potential corrective measures. The aim of this study was to investigate the changes in milk microbiota after the intramammary treatment with inactivated cultures of Lactobacillus rhamnosus of mammary gland quarters naturally affected by subclinical mastitis as compared to antibiotic therapy.A number of 43 quarters affected by subclinical mastitis with no signs of clinical inflammation and aerobic culture positive for pathogens were included in the study. The experimental design was as follows: 11 quarters were treated with antibiotics, 15 with inactivated cultures of Lactobacillus rhmnosus and 17 with PBS as negative control, by means of intrammary injection. Samples were collected at eight time points, pre- (T-29, T-21, T-15, T-7, T0 days) and post- treatment (T1, T2, and T6 days). Microbiological culture and Somatic Cell Count (SCC) were perfomed on all the samples, and microbiota was determined on milk samples collected at T0 and T6 by amplifying the V4 region of 16S rRNA gene by PCR and sequencing using next generation sequencing technique. Treatment with Lactobacillus rhamnosus elicited a strong chemotactic response, as determined by a significant increase of leukocytes in milk, but did not change the microbiological culture results of the treated quarters. For what concerns the analysis of the microbiota, the treatment with Lactobacillus rhamnosus induced the modification in relative abundance of some genera such as Pseudomonas and 5-7N15. As expected, antibiotic treatment caused major changes in microbiota structure with an increase of Methylobacterium relative abundance. No changes were detected after PBS treatment. In conclusion, the present findings demonstrated that the in vivo intrammmary treatment with Lactobacillus rhamnosus has a transient pro-inflammatory activity by increasing SCC and is capable to modify the microbiota of milk after six days from inoculation, albeit slightly, even when the bacterial cultures were heat inactivated. Further studies are necessary to assess the potential use of this GRAS as supportive therapy against mastitis.


Asunto(s)
Antibacterianos/administración & dosificación , Lacticaseibacillus rhamnosus , Glándulas Mamarias Animales/microbiología , Mastitis Bovina/terapia , Probióticos/administración & dosificación , Crianza de Animales Domésticos/métodos , Animales , Antibacterianos/efectos adversos , Búfalos , Bovinos , Femenino , Lactancia/efectos de los fármacos , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/patología , Mastitis Bovina/microbiología , Leche/efectos de los fármacos , Leche/microbiología
19.
PLoS One ; 12(9): e0184710, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28926595

RESUMEN

The aim of this study was to define the microbiota of water buffalo milk during sub-clinical and clinical mastitis, as compared to healthy status, by using high-throughput sequencing of the 16S rRNA gene. A total of 137 quarter samples were included in the experimental design: 27 samples derived from healthy, culture negative quarters, with a Somatic Cell Count (SCC) of less than 200,000 cells/ml; 27 samples from quarters with clinical mastitis; 83 samples were collected from quarters with subclinical mastitis, with a SCC number greater of 200,000 cells/ml and/or culture positive for udder pathogens, without clinical signs of mastitis. Bacterial DNA was purified and the 16S rRNA genes were individually amplified and sequenced. Significant differences were found in milk samples from healthy quarters and those with sub-clinical and clinical mastitis. The microbiota diversity of milk from healthy quarters was richer as compared to samples with sub-clinical mastitis, whose microbiota diversity was in turn richer as compared to those from clinical mastitis. The core microbiota of water buffalo milk, defined as the asset of microorganisms shared by all healthy milk samples, includes 15 genera, namely Micrococcus, Propionibacterium, 5-7N15, Solibacillus, Staphylococcus, Aerococcus, Facklamia, Trichococcus, Turicibacter, 02d06, SMB53, Clostridium, Acinetobacter, Psychrobacter and Pseudomonas. Only two genera (Acinetobacter and Pseudomonas) were present in all the samples from sub-clinical mastitis, and no genus was shared across all in clinical mastitis milk samples. The presence of mastitis was found to be related to the change in the relative abundance of genera, such as Psychrobacter, whose relative abundance decreased from 16.26% in the milk samples from healthy quarters to 3.2% in clinical mastitis. Other genera, such as SMB53 and Solibacillus, were decreased as well. Discriminant analysis presents the evidence that the microbial community of healthy and clinical mastitis could be discriminated on the background of their microbiota profiles.


Asunto(s)
Mastitis/diagnóstico , Microbiota , Leche/microbiología , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Búfalos , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Análisis Discriminante , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Mastitis/microbiología , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN , Células Madre/citología
20.
Vet Ital ; 51(2): 99-105, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26129660

RESUMEN

The use of live vaccine strain RB51 for vaccination of domestic water buffaloes (Bubalus bubalis) at risk of infection with Brucella abortus is permitted notwithstanding the plans for the eradication and only under strict veterinary control. The antibodies induced by RB51 vaccination are not detectable using conventional diagnostic techniques; therefore, it is necessary to have a specific diagnostic tool able to discriminate vaccinated from unvaccinated animals. The combination of a complement fixation test (CFT) with specific RB51 antigen (RB51-CFT) and a brucellin skin test has been demonstrated to be a reliable diagnostic system to identify single cattle (Bos taurus) vaccinated with RB51. So far, no data are available in the international scientific literature regarding the use of this test association in water buffalo. For this reason the suitability of this test combination has been evaluated in a water buffalo herd. One hundred twenty-seven animals farmed in a herd of Salerno province (Campania, Southern Italy), in the context of a presumptive unauthorized use of RB51 vaccine were chosen for this study. All tested animals resulted negative to Rose Bengal test (RBT) and complement fixation test (CFT) used for the detection of specific antibodies against Brucella field strains. Seventy-one animals (56%) developed RB51 antigen-specific CFT (RB51-CFT) antibodies against RB51 vaccine in a first sampling, while 104 animals (82%) gave positive result to a second serum sampling conducted 11 days after the intradermal inoculation of the RB51 brucellin. One hundred and seven animals (84%) showed a positive reaction to the RB51-CFT in at least 1 sampling, while 111 animals (87%) resulted positive to the RB51 brucellin skin test. Thus, analysing the results of the 3 testing in parallel, 119 animals (94%) were positive to at least 1 of the performed tests. The results suggest that the use in parallel of the RB51 brucellin skin test with RB51-CFT may represent a reliable diagnostic system to identify water buffaloes vaccinated with RB51 vaccine.


Asunto(s)
Aborto Veterinario/sangre , Aborto Veterinario/prevención & control , Vacuna contra la Brucelosis , Brucella abortus/inmunología , Búfalos , Aborto Veterinario/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos , Brucella abortus/clasificación , Femenino , Pruebas Cutáneas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA