Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Chem Rec ; 20(12): 1568-1595, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33078557

RESUMEN

Heavy fuel oil ash (HFOA) is generated as an industrial waste material during the combustion of heavy fuel oil in power/desalination plants. With increasing energy demands, a significant volume of HFOA is generated. It is generally disposed of in landfills, causing environmental pollution, as it contains several toxic elements. Recently, efforts were made towards developing strategies for reusing industrial waste materials and creating value-added products from the waste materials. Despite significant information available in the literature on the utilization of HFOA, there is still a need for a thorough and systematic review on the characterization and utilization of HFOA in various applications. Consequently, this paper aims to present a critical review of the literature on HFOA generation, its chemical composition, physical properties, morphology, and applications. It is encouraging to note that HFOA has been used in several potential applications, such as the preparation of activated carbon and carbon nanotubes, metal recovery, environmental pollutant removal, polymer composites and construction materials, etc. However, the development of several value-added materials utilizing HFOA and its applications in other areas such as coatings, cathodic protection systems, and phase change materialswould emerge as a new topic of research. It is expected that this review will act as a precursor for further research on the use of HFOA in industrial applications. Since the use of HFOA will lead to environmental, economic, and technical benefits, research in the utilization of this industrial waste material is highly recommended.

2.
Artículo en Inglés | MEDLINE | ID: mdl-21240708

RESUMEN

A new atomic line at 594.8 nm of neutral chlorine (Cl I) has been used as a marker to quantify the amount of chloride present in the concrete sample using Laser Induced Breakdown Spectroscopy (LIBS). Although, the relative intensity of the 594.8 nm line is 1000-fold less than that of the most commonly used intense atomic line of Cl I at 837.5 nm reported in the literature, the limit of detection of chlorine achieved with our set-up in the concrete sample using the new line is comparable with the 837.5 nm. This clearly indicates that the sensitivity of the LIBS system for detection of chlorine in concrete sample using 594.8 nm is at least 1000-fold more than the one using 837.5 nm, which can be attributed to the characteristic less self absorption. LIBS data for different concentration of chloride content in concrete sample was also carried out and a calibration curve was drawn. The excitation scheme for 594.8 nm line is also proposed in this work.


Asunto(s)
Técnicas de Química Analítica/métodos , Cloruros/análisis , Cloro/análisis , Materiales de Construcción/análisis , Análisis Espectral/métodos , Cloruros/química , Cloro/química , Rayos Láser , Sensibilidad y Especificidad
3.
Chem Asian J ; 16(23): 3914-3930, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34529339

RESUMEN

Jute stick, one of the most commonly and abundantly available agricultural waste product, was converted to a value-added submicron/nano jute carbon by using pyrolysis and high-energy ball milling techniques. The submicron/nano jute carbon was characterized using FE-SEM, TEM, EDS, XRD, XPS and Raman spectroscopy. The anticorrosive performance of the submicron/nano jute carbon was investigated through electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP) and salt spray techniques, on mild steel plates coated with a mixture of epoxy resin and the submicron/nano jute carbon. The electrochemical impedance of the steel coated with the composite coating was two orders of magnitudes higher than that of the specimen coated with neat epoxy. Consequently, the corrosion rate of specimens coated with composite coating was 13-20 times higher than that of steel coated with neat epoxy coating. The salt spray results also indicate an improvement in the corrosion resistance performance of the composite coating compared to the neat epoxy. The uniform distribution of the submicron/nano jute carbon particles in the epoxy resin improved the denseness of the composite coating by acting as a barrier against the diffusion of chloride, moisture, and oxygen, thus, improving the corrosion resistance of the developed coating.

4.
Appl Radiat Isot ; 105: 6-10, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26218450

RESUMEN

The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method.

5.
Appl Radiat Isot ; 104: 224-31, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26207950

RESUMEN

The pulse height response of a large diameter fast 100 mm × 100 mm LaBr3:Ce detector was measured for 0.1-10 MeV gamma-rays. The detector has a claimed time resolution of 608 ps for 511 keV gamma rays, but has relatively poor energy resolution due to the characteristics of its fast photomultiplier. The detector pulse height response was measured for gamma rays from cobalt, cesium, and bismuth radioisotope sources as well as prompt gamma rays from thermal neutron capture in water samples contaminated with mercury (3.1 wt%), boron (2.5 wt%), cadmium (0.25 wt%), chromium (52 wt%), and nickel (22 wt%) compounds. The energy resolution of the detector was determined from full width at half maximum (FWHM) of element-characteristic gamma ray peaks in the pulse height spectrum associated with the element present in the contaminated water sample. The measured energy resolution of the 100 mm × 100 mm detector varies from 12.7±0.2% to 1.9±0.1% for 0.1 to 10 MeV gamma rays, respectively. The graph showing the energy resolution ΔE/E(%) versus 1/√Eγ was fitted with a linear function to study the detector light collection from the slope of the curve. The slope of the present 100 mm × 100 mm detector is almost twice as large as the slope of a similar curve of previously published data for a 89 mm × 203 mm LaBr3:Ce detector. This indicates almost two times poorer light collection in the 100 mm × 100 mm detector as compared to the other detector.

6.
Appl Radiat Isot ; 58(1): 27-38, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12485660

RESUMEN

Performance tests of external cylindrical moderators of an accelerator-based prompt gamma ray neutron activation analysis (PGNAA) setup have been carried out through thermal neutrons and prompt gamma-ray yield measurements. The PGNAA setup is to be used for analysis of cement samples. This study was conducted to investigate the effects of geometry of cylindrical moderator on yield of thermal neutrons and prompt gamma-rays for two different types of moderator assemblies. One of the moderators was to be used with a small sample and the other to be used with a large sample. Fast and thermal neutron yield was measured inside the sample volume as a function of the front moderator thickness as well as sample length. Neutron yield measurement was carried out at the King Fahd University of Petroleum and Minerals 350 keV pulsed beam accelerator using nuclear track detectors. The pulsed 200 keV deuteron beam with 5 ns pulse width and 31.25 kHz frequency was used to produce 2.8 MeV neutrons via D(d,n) reaction. Neutron yield measurements showed that the large sample moderator has a smaller yield of thermal neutrons as compared to the small sample moderator, which is in complete agreement with the results of Monte Carlo yield calculations of the thermal and fast neutrons from both the moderators. Finally, the prompt gamma-ray yield from a Portland cement sample was measured using the two moderators and was compared with each other. As predicted by Monte Carlo simulations, in spite of a smaller yield of thermal neutrons, the large sample moderator has a higher yield of prompt gamma-rays.

7.
Appl Radiat Isot ; 94: 8-13, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25063940

RESUMEN

Single prompt gamma ray energy has been evaluated to measure chlorine concentration in fly ash (FA), Super-Pozz (SPZ) and blast furnace slag (BFS) cement concrete specimens using a portable neutron generator-based Prompt Gamma Neutron Activation (PGNAA) setup. The gamma ray yield data from chloride concentration measurement in FA, SPZ and BFS cement concretes for 2.86-3.10, 5.72 and 6.11MeV chlorine gamma rays were analyzed to identify a gamma ray with common slope (gamma ray yield/Cl conc. wt%) for the FA, BFS and SPZ cement concretes. The gamma ray yield data for FA and SPZ cement concretes with varying chloride concentration were measured previously using a portable neutron generator-based PGNAA setup. In the current study, new data have been measured for chlorine detection in the BFS cement concrete using a portable neutron generator-based PGNAA setup for 2.86-3.10, 5.72, and 6.11MeV chlorine gamma rays. The minimum detection limit of chlorine in BFS cement concrete (MDC) was found to be 0.034±0.010, 0.032±0.010, 0.033±0.010 for 2.86-3.10, 5.72 and 6.11MeV gamma ray, respectively. The new BFS cement concrete data, along with the previous measurements for FA and SPZ cement concretes, have been utilized to identify a gamma ray with a common slope to analyze the Cl concentration in all of these blended cement concretes. It has been observed that the 6.11MeV chlorine gamma ray has a common slope of 5295±265 gamma rays/wt % Cl concentration for the portable neutron generator-based PGNAA setup. The minimum detectable concentration (MDC) of chlorine in blended cement concrete was measured to be 0.033±0.010wt % for the portable neutron generator-based PGNAA. Thus, the 6.11MeV chlorine gamma ray can be used for chlorine analysis of blended cement concretes.

8.
Appl Radiat Isot ; 70(8): 1671-4, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22738844

RESUMEN

The chlorine concentration in chloride-contaminated FA cement concrete specimens was measured using a portable neutron generator based prompt gamma-ray neutron activation (PGNAA) setup with the neutron generator and the gamma-ray detector placed side-by-side on one side of the concrete sample. The minimum detectable concentration of chlorine in FA cement concrete measured in the present study was comparable with previous results for larger accelerator based PGNAA setup. It shows the successful application of a portable neutron generator in concrete corrosion studies.

9.
Appl Radiat Isot ; 70(1): 222-6, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21816620

RESUMEN

Tests of a large volume Bismuth Germinate (BGO) detector were carried out to detect low energy prompt gamma-rays from boron and cadmium-contaminated water samples using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. Inspite of strong interference between the sample- and the detector-associated prompt gamma-rays, an excellent agreement has been observed between the experimental and calculated yields of the prompt gamma-rays, indicating successful application of the large volume BGO detector in the PGNAA analysis of bulk samples using low energy prompt gamma-rays.


Asunto(s)
Bismuto/efectos de la radiación , Germanio/efectos de la radiación , Radiometría/instrumentación , Transductores , Contaminantes Radiactivos del Agua/análisis , Diseño de Equipo , Análisis de Falla de Equipo , Rayos gamma , Dosis de Radiación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
Appl Radiat Isot ; 70(5): 882-7, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22364786

RESUMEN

The yield of 478 and 558 keV gamma-rays have been measured from water samples containing 0.031-0.500 wt. % boron and 0.0625-0.500 wt. % cadmium, respectively, using a cylindrical 76 mm × 76 mm (height × diameter) LaCl(3):Ce detector. Inspite of interferences between detector-associated and the sample-associated prompt gamma rays, the LaCl(3):Ce detector has excellent resolution for the low energy prompt gamma-rays. An excellent agreement has been observed between the experimental and calculated yield of boron and cadmium prompt gamma ray from water samples.

11.
Appl Radiat Isot ; 68(3): 412-7, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20042342

RESUMEN

Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to Portland cement in concrete to prevent reinforcement steel corrosion in concrete. Further preventive measure against reinforcement steel corrosion require monitoring of chloride salts concentration in concrete using non-destructive techniques, such as the prompt gamma-ray neutron activation analysis (PGNAA) technique. Due to interferences between gamma-rays from chlorine and calcium in PGNAA technique, detection limit of chlorine in concrete strongly depends upon calcium concentration in concrete. SF mainly contains silica and its addition to cement concrete reduces overall concentration of calcium in concrete. This may result in an improvement in detection limit of chlorine in SF-based concrete in PGNAA studies. Particularly for chlorine detection using 6.11 and 6.62 MeV prompt gamma-rays that strongly interfere with 6.42 MeV prompt gamma-rays from calcium. In this study, SF was added to Portland cement to prevent concrete reinforcement steel from corrosion. The chlorine concentration in SF cement concrete specimens containing 0.2-3.0 wt% chlorine was measured through yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV chlorine gamma-rays using PGNAA technique. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the gamma-ray yield calculated through the Monte Carlo simulations. Further the minimum detectable concentration (MDC) of chlorine in SF cement concrete was calculated and compared with the MDC values of chlorine in plain concrete and concrete mixed with fly ash cement. The MDC of chlorine in SF-based concrete through 6.11 MeV, and 6.62 MeV chlorine gamma-rays was found to be improved as compared to those in plain concrete and concrete mixed with fly ash cement.

12.
Appl Radiat Isot ; 68(4-5): 635-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19819713

RESUMEN

Pozzolanic materials are added to Portland cement concrete to increase its durability, particularly corrosion-resistance. In this study the elemental composition of a pozzolanic cement concrete was measured non-destructively utilizing an accelerator-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup. The optimum size of the pozzolanic cement concrete specimen was obtained through Monte Carlo simulations. The simulation results were experimentally verified through the gamma-ray yield measurement from the pozzolanic cement concrete specimens as a function of their radii. The concentration of the pozzolanic material in the cement concrete specimens was evaluated by measuring gamma-ray yield for calcium and iron from pozzolanic cement concrete specimens containing 5-80 wt% pozzolan. A good agreement was noted between the experimental values and the Monte Carlo simulation results, indicating an excellent response of the KFUPM accelerator-based PGNAA setup for pozzolan based concrete.


Asunto(s)
Algoritmos , Materiales de Construcción/análisis , Ensayo de Materiales/métodos , Minerales/análisis , Minerales/química , Análisis de Activación de Neutrones/métodos
13.
Appl Radiat Isot ; 67(9): 1707-10, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19386509

RESUMEN

Preventive measures against corrosion of reinforcing steel require making the concrete dense by adding pozzolanic materials, such as fly ash, silica fume, Superpozz, blast furnace slag, etc. to Portland cement. In order to obtain the desired strength and durability of concrete, it is desirable to monitor the concentration of the pozzolan in the blended cement concrete. Addition of pozzolan to blended cement changes the overall concentration of calcium and silicon in the blended cement concrete. The resulting variation in calcium and silicon gamma-ray yield ratio from blended cement concrete has found to have an inverse correlation with concentration of fly ash, silica fume, Superpozz, blast furnace slag in the blended cement concrete. For experimental verification of the correlation, intensities of calcium and silicon prompt gamma-ray due to capture of thermal neutrons in blended cement concrete samples containing 5-80% (by weight of cement) silica fume, fly ash and Superpozz were measured. The gamma-ray intensity ratio was measured from 6.42 MeV gamma-rays from calcium and 4.94 MeV gamma-ray from silicon. The experimentally measured values of calcium to silicon gamma-ray yield ratio in the fly ash, silica fume and Superpozz cement concrete specimens agree very well with the results of the Monte Carlo simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA