Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Phytoremediation ; 24(13): 1431-1443, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35130096

RESUMEN

Microalgae cultivation is well known as a sustainable method for eco-friendly wastewater phycoremediation and valuable biomass production. This study investigates the feasibility and kinetic removal of organic compounds and nutrients from food processing wastewater (FPW) using Botryococcus sp. in an enclosed photobioreactor. Simultaneously, response surface methodology (RSM) via face-centered central composite design (FCCCD) was applied to optimize the effects of alum and chitosan dosage and pH sensitivity on flocculation efficiency. The maximum growth rate of Botryococcus sp. cultivated in FPW was 1.83 mg day-1with the highest removal of chemical oxygen demand (COD), total organic carbon (TOC), and total phosphorus (TP) after 12 days of phycoremediation of 96.1%, 87.2%, and 35.4%, respectively. A second-order polynomial function fits well with the experimental results. Both coagulant dosage and pH significantly (p < 0.05) affect the flocculation efficiency of Botryococcus sp. biomass cultivated in FPW. The highest flocculation efficiency (92.4%) was obtained at a dosage of 166 mg L-1and pH 12 for alum coagulant, while 94.9% flocculation efficiency was achieved with optimum chitosan dosage and pH of 30 mg L-1and 5.54, respectively. In general, Botryococcus sp. shows a great removal efficiency of FPW contamination, whereas RSM provides excellent analysis for biomass harvesting optimization using a flocculation technique.


Eutrophication is caused by an overabundance of organic compounds and nutrients such as chemical oxygen demand, total nitrogen, phosphorus and total organic carbon in food processing wastewater (FPW) that is discharged into natural water systems. Although, there has been few research on the phycoremediation using Botryococcus sp. in wastewater treatment. Hence, the current study was carried out to investigate Botryoccocus sp. biomass harvesting efficiency using alum and chitosan as flocculants after the nutrients and organic compounds removal were analyzed during phycoremediation. The use of response surface methodology also offers excellent statistical analysis for flocculation optimization.


Asunto(s)
Quitosano , Chlorophyta , Microalgas , Fotobiorreactores , Aguas Residuales/análisis , Biomasa , Biodegradación Ambiental , Fósforo , Manipulación de Alimentos , Carbono/análisis
2.
Biotechnol Appl Biochem ; 68(6): 1128-1138, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32969042

RESUMEN

The traditional approach of fermentation by a free cell system has limitations of low productivity and product separation that need to be addressed for production enhancement and cost effectiveness. One of potential methods to solve the problems is cell immobilization. Microbial cell immobilization allows more efficient up-scaling by reducing the nonproductive growth phase, improving product yield and simplifying product separation. Furthermore, the emergence of nanomaterials such as carbon nanotubes, graphene, and metal-based nanomaterials with excellent functional properties provides novel supports for cell immobilization. Nanomaterials have catalytic properties that can provide specific binding site with targeted cells. However, the toxicity of nanomaterials towards cells has hampered its application as it affects the biological system of the cells, which cannot be neglected in any way. This gray area in immobilization is an important concern that needs to be addressed and understood by researchers. This review paper discusses an overview of nanomaterials used for cell immobilization with special focus on its toxicological challenges and how by understanding physicochemical properties of nanomaterials could influence the toxicity and biocompatibility of the cells.


Asunto(s)
Células Inmovilizadas/metabolismo , Escherichia coli/metabolismo , Grafito/metabolismo , Metales Pesados/metabolismo , Nanoestructuras/química , Saccharomyces cerevisiae/metabolismo , Biocatálisis , Células Inmovilizadas/química , Escherichia coli/citología , Grafito/química , Metales Pesados/química , Nanotubos de Carbono/química , Saccharomyces cerevisiae/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA