Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
PLoS Pathog ; 20(3): e1012094, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38536895

RESUMEN

Vibrio parahaemolyticus is the leading cause of seafood-borne gastroenteritis in humans worldwide. The major virulence factor responsible for the enteropathogenicity of this pathogen is type III secretion system 2 (T3SS2), which is encoded on the 80-kb V. parahaemolyticus pathogenicity island (Vp-PAI), the gene expression of which is governed by the OmpR-family transcriptional regulator VtrB. Here, we found a positive autoregulatory feature of vtrB transcription, which is often observed with transcriptional regulators of bacteria, but the regulation was not canonically dependent on its own promoter. Instead, this autoactivation was induced by heterogeneous transcripts derived from the VtrB-regulated operon upstream of vtrB. VtrB-activated transcription overcame the intrinsic terminator downstream of the operon, resulting in transcription read-through with read-in transcription of the vtrB gene and thus completing the autoregulatory loop for vtrB gene expression. The dampening of read-through transcription with an exogenous strong terminator reduced vtrB gene expression. Furthermore, a V. parahaemolyticus mutant with defects in the vtrB autoregulatory loop also showed compromises in T3SS2 expression and T3SS2-dependent cytotoxicity in vitro and enterotoxicity in vivo, indicating that this autoregulatory loop is essential for sustained vtrB activation and the consequent robust expression of T3SS2 genes for pathogenicity. Taken together, these findings demonstrate that the regulatory loop for vtrB gene expression based on read-through transcription from the upstream operon is a crucial pathway in T3SS2 gene regulatory network to ensure T3SS2-mediated virulence of V. parahaemolyticus.


Asunto(s)
Vibriosis , Vibrio parahaemolyticus , Humanos , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Regiones Promotoras Genéticas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vibriosis/genética , Vibriosis/microbiología , Regulación Bacteriana de la Expresión Génica
2.
J Bacteriol ; 205(1): e0026622, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36468869

RESUMEN

The marine bacterium Vibrio parahaemolyticus is a major seafood-borne pathogen that causes acute diarrhea in humans. A crucial virulence determinant of V. parahaemolyticus is the type III secretion system 2 (T3SS2), which is encoded on the Vibrio parahaemolyticus pathogenicity island (Vp-PAI), in which gene expression is dependent on environmental cues, such as temperature and salinity. This characteristic may implicate the adaptation of V. parahaemolyticus from its natural habitat to the human body environment during infection; however, the underlying mechanism remains unknown. Here, we describe the regulatory role of the histone-like nucleoid-structuring protein (H-NS), which is a xenogeneic silencing protein, in T3SS2 gene expression through the conditional silencing of the gene encoding a master regulator of Vp-PAI, VtrB. The hns deletion canceled the temperature- and salinity-dependent differential T3SS2 gene expression. H-NS bound to the vtrB promoter containing AT-rich sequences, and the binding sites partially overlapped the binding sites of two positive regulators of vtrB (i.e., VtrA and ToxR), which may block the transcriptional activation of vtrB. H-NS-family proteins multimerize along the DNA strand, forming stiffened filament and/or bridging DNA duplexes for its target silencing. In V. parahaemolyticus, mutations at conserved residues that are required for the multimerization of H-NS abolished the repressive activity on VtrB expression, supporting the contention that H-NS multimerization is also critical for vtrB silencing in V. parahaemolyticus. Taken together, these findings demonstrate the principal role of H-NS as a thermal and salt switch with sensory and regulatory properties for ensuring T3SS2 gene regulation in V. parahaemolyticus. IMPORTANCE In the major seafood-borne pathogen Vibrio parahaemolyticus, the type III secretion system 2 (T3SS2) is a major virulence factor that is responsible for the enterotoxicity of this bacterium. The expression of T3SS2 varies according to changes in temperature and salinity, but the mechanism via which T3SS2 expression is regulated in response to such physical cues remains unknown. Here, we report that H-NS, a xenogeneic silencer that is widespread in Gram-negative bacteria, modulates the entirety of T3SS2 gene expression through the transcriptional silencing of the gene encoding the T3SS2 master regulator VtrB in a temperature- and salinity-dependent manner. Thus, our findings provide insights into how this pathogen achieves the appropriate control of the expression of virulence genes in the transition between aquatic and human environments.


Asunto(s)
Sistemas de Secreción Tipo III , Vibrio parahaemolyticus , Humanos , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Histonas/genética , Histonas/metabolismo , Vibrio parahaemolyticus/genética , Temperatura , Salinidad , Proteínas Bacterianas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Regulación Bacteriana de la Expresión Génica
3.
BMC Genomics ; 23(1): 226, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35321661

RESUMEN

BACKGROUND: BEC-producing Clostridium perfringens is a causative agent of foodborne gastroenteritis. It was first reported in 2014, and since then, several isolates have been identified in Japan and the United Kingdom. The novel binary ADP-ribosylating toxin BEC, which consists of two components (BECa and BECb), is encoded on a plasmid that is similar to pCP13 and harbours a conjugation locus, called Pcp, encoding homologous proteins of the type 4 secretion system. Despite the high in vitro conjugation frequency of pCP13, its dissemination and that of related plasmids, including bec-harbouring plasmids, in the natural environment have not been characterised. This lack of knowledge has limited our understanding of the genomic epidemiology of bec-harbouring C. perfringens strains. RESULTS: In this study, we determined the complete genome sequences of five bec-harbouring C. perfringens strains isolated from 2009 to 2019. Each isolate contains a ~ 3.36 Mbp chromosome and 1-3 plasmids of either the pCW3-like family, pCP13-like family, or an unknown family, and the bec-encoding region in all five isolates was located on a ~ 54 kbp pCP13-like plasmid. Phylogenetic and SNP analyses of these complete genome sequences and the 211 assembled C. perfringens genomes in GenBank showed that although these bec-harbouring strains were split into two phylogenetic clades, the sequences of the bec-encoding plasmids were nearly identical (>99.81%), with a significantly smaller SNP accumulation rate than that of their chromosomes. Given that the Pcp locus is conserved in these pCP13-like plasmids, we propose a mechanism in which the plasmids were disseminated by horizontal gene transfer. Data mining showed that strains carrying pCP13-like family plasmids were unexpectedly common (58/216 strains) and widely disseminated among the various C. perfringens clades. Although these plasmids possess a conserved Pcp locus, their 'accessory regions' can accommodate a wide variety of genes, including virulence-associated genes, such as becA/becB and cbp2. These results suggest that this family of plasmids can integrate various foreign genes and is transmissible among C. perfringens strains. CONCLUSION: This study demonstrates the potential significance of pCP13-like plasmids, including bec-encoding plasmids, for the characterisation and monitoring of the dissemination of pathogenic C. perfringens strains.


Asunto(s)
Clostridium perfringens , Enterotoxinas , Clostridium perfringens/genética , Enterotoxinas/genética , Genoma Bacteriano , Genómica , Filogenia , Plásmidos/genética
4.
Proc Natl Acad Sci U S A ; 115(28): 7422-7427, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29941571

RESUMEN

Initial attachment and subsequent colonization of the intestinal epithelium comprise critical events allowing enteric pathogens to survive and express their pathogenesis. In enterotoxigenic Escherichia coli (ETEC), these are mediated by a long proteinaceous fiber termed type IVb pilus (T4bP). We have reported that the colonization factor antigen/III (CFA/III), an operon-encoded T4bP of ETEC, possesses a minor pilin, CofB, that carries an H-type lectin domain at its tip. Although CofB is critical for pilus assembly by forming a trimeric initiator complex, its importance for bacterial attachment remains undefined. Here, we show that T4bP is not sufficient for bacterial attachment, which also requires a secreted protein CofJ, encoded within the same CFA/III operon. The crystal structure of CofB complexed with a peptide encompassing the binding region of CofJ showed that CofJ interacts with CofB by anchoring its flexible N-terminal extension to be embedded deeply into the expected carbohydrate recognition site of the CofB H-type lectin domain. By combining this structure and physicochemical data in solution, we built a plausible model of the CofJ-CFA/III pilus complex, which suggested that CofJ acts as a molecular bridge by binding both T4bP and the host cell membrane. The Fab fragments of a polyclonal antibody against CofJ significantly inhibited bacterial attachment by preventing the adherence of secreted CofJ proteins. These findings signify the interplay between T4bP and a secreted protein for attaching to and colonizing the host cell surface, potentially constituting a therapeutic target against ETEC infection.


Asunto(s)
Adhesión Bacteriana , Escherichia coli Enterotoxigénica/química , Proteínas de Escherichia coli/química , Fimbrias Bacterianas/química , Cristalografía por Rayos X , Escherichia coli Enterotoxigénica/genética , Escherichia coli Enterotoxigénica/metabolismo , Escherichia coli Enterotoxigénica/patogenicidad , Escherichia coli K12/química , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Humanos , Operón , Dominios Proteicos
5.
Microbiol Immunol ; 64(3): 167-181, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31850542

RESUMEN

Vibrio parahaemolyticus is a leading cause of seafood-borne bacterial gastroenteritis in humans. Since its discovery in 1950, this bacterium has been isolated in widespread outbreaks and in sporadic cases of gastroenteritis worldwide. Although the exotoxin, thermostable direct hemolysin, had been the focus of extensive research on the pathogenicity of V. parahaemolyticus, the whole-genome sequencing of a clinical isolate, RIMD2210633 strain, was a breakthrough in this field. The possession of two sets of gene clusters for type III secretion systems (T3SS1 and T3SS2) was unveiled by that genome project. T3SS is a protein export apparatus that delivers bacterial proteins, called effectors, directly into the host's cytosol, to disrupt host cell function. The subsequent studies have established that T3SS2, which is encoded in an 80 kb pathogenicity island called V. parahaemolyticus pathogenicity island (Vp-PAI), is closely related to enteropathogenicity. Recent functional analyses of Vp-PAI-encoded genes revealed the sophisticated mechanisms in V. parahaemolyticus for sensing the intestinal environment and host cell contact, and a dozen T3SS2-exported proteins encoded in Vp-PAI. In this review, we summarize recent advances in V. parahaemolyticus research regarding the control of the expression of Vp-PAI-encoded genes, structural components and the secretory regulation of T3SS2, and the biological activities of T3SS2-exported effectors. Thus, Vp-PAI-encoded T3SS2 becomes an important key in the postgenomic era to shed light on the enteropathogenic mechanism of V. parahaemolyticus.


Asunto(s)
Islas Genómicas/genética , Sistemas de Secreción Tipo III , Vibriosis/microbiología , Vibrio parahaemolyticus , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Interacciones Microbiota-Huesped , Humanos , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Vibrio parahaemolyticus/patogenicidad
6.
PLoS Pathog ; 11(3): e1004694, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25738744

RESUMEN

Vibrio parahaemolyticus is an important pathogen that causes food-borne gastroenteritis in humans. The type III secretion system encoded on chromosome 2 (T3SS2) plays a critical role in the enterotoxic activity of V. parahaemolyticus. Previous studies have demonstrated that T3SS2 induces actin stress fibers in various epithelial cell lines during infection. This stress fiber formation is strongly related to pathogenicity, but the mechanisms that underlie T3SS2-dependent actin stress fiber formation and the main effector have not been elucidated. In this study, we identified VopO as a critical T3SS2 effector protein that activates the RhoA-ROCK pathway, which is an essential pathway for the induction of the T3SS2-dependent stress fiber formation. We also determined that GEF-H1, a RhoA guanine nucleotide exchange factor (GEF), directly binds VopO and is necessary for T3SS2-dependent stress fiber formation. The GEF-H1-binding activity of VopO via an alpha helix region correlated well with its stress fiber-inducing capacity. Furthermore, we showed that VopO is involved in the T3SS2-dependent disruption of the epithelial barrier. Thus, VopO hijacks the RhoA-ROCK pathway in a different manner compared with previously reported bacterial toxins and effectors that modulate the Rho GTPase signaling pathway.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal/fisiología , Vibrio parahaemolyticus/metabolismo , Actinas/metabolismo , Humanos , Microtúbulos/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
7.
Biochem Biophys Res Commun ; 480(2): 261-267, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27751850

RESUMEN

Binary enterotoxin of Clostridium perfringens (BEC), consisting of the components BECa and BECb, was recently identified as a novel enterotoxin produced by C. perfringens that causes acute gastroenteritis in humans. Although the detailed mechanism of cell intoxication by BEC remains to be defined, BECa shows both NAD+-glycohydrolase and actin ADP-ribosyltransferase activities in the presence of NAD+. In this study, we determined the first crystal structure of BECa in its apo-state and in complex with NADH. The structure of BECa shows striking resemblance with other binary actin ADP-ribosylating toxins (ADPRTs), especially in terms of its overall protein fold and mechanisms of substrate recognition. We present a detailed picture of interactions between BECa and NADH, including bound water molecules located near the C1'-N glycosidic bond of NADH and the catalytically important ADP-ribosylating turn-turn (ARTT) loop. We observed that the conformational rearrangement of the ARTT loop, possibly triggered by a conformational change involving a conserved tyrosine residue coupled with substrate binding, plays a crucial role in catalysis by properly positioning a catalytic glutamate residue in the E-X-E motif of the ARTT loop in contact with the nucleophile. Our results for BECa provide insight into the common catalytic mechanism of the family of binary actin ADPRTs.


Asunto(s)
Enterotoxinas/química , Actinas/metabolismo , Adenosina Difosfato/metabolismo , Cristalografía por Rayos X , Enterotoxinas/metabolismo , Modelos Moleculares , NAD/química , NAD/metabolismo , Conformación Proteica
8.
Cell Microbiol ; 17(2): 183-90, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25495647

RESUMEN

Vibrio parahaemolyticus is a leading causative agent of seafood-borne gastroenteritis worldwide. Most clinical isolates from patients with diarrhoea possess two sets of genes for the type III secretion system (T3SS) on each chromosome (T3SS1 and T3SS2). T3SS is a protein secretion system that delivers effector proteins directly into eukaryotic cells. The injected effectors modify the normal cell functions by altering or disrupting the normal cell signalling pathways. Of the two sets of T3SS genes present in V. parahaemolyticus, T3SS2 is essential for enterotoxicity in several animal models. Recent studies have elucidated the biological activities of several T3SS2 effectors and their roles in virulence. This review focuses on the regulation of T3SS2 gene expression and T3SS2 effectors that specifically target the actin cytoskeleton.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Sistemas de Secreción Bacterianos , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Vibrio parahaemolyticus/fisiología , Animales , Diarrea/microbiología , Humanos , Vibriosis/microbiología , Vibrio parahaemolyticus/metabolismo
9.
Cell Microbiol ; 16(6): 938-47, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24345190

RESUMEN

Vibrio parahaemolyticus is a Gram-negative marine bacterium that causes acute gastroenteritis in humans. The virulence of V. parahaemolyticus is dependent upon a type III secretion system (T3SS2). One effector for T3SS2, VopC, is a homologue of the catalytic domain of cytotoxic necrotizing factor (CNF), and was recently reported to be a Rho family GTPase activator and to be linked to internalization of V. parahaemolyticus by non-phagocytic cultured cells. Here, we provide direct evidence that VopC deamidates Rac1 and CDC42, but not RhoA, in vivo. Our results alsosuggest that VopC, through its activation of Rac1, contributes to formation of actin stress fibres in infected cells. Invasion of host cells, which occurs at a low frequency, does not seem linked to Rac1 activation, but instead appears to require CDC42. Finally, using an infant rabbit model of V. parahaemolyticus infection, we show that the virulence of V. parahaemolyticus is not dependent upon VopC-mediated invasion. Genetic inactivation of VopC did not impair intestinal colonization nor reduce signs of disease, including fluid accumulation, diarrhoea and tissue destruction. Thus, although VopC can promote host cell invasion, such internalization is not a critical step of the disease process, consistent with the traditional view of V. parahaemolyticus as an extracellular pathogen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endocitosis , Interacciones Huésped-Patógeno , Vibriosis/microbiología , Vibrio parahaemolyticus/fisiología , Factores de Virulencia/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Células CACO-2 , Modelos Animales de Enfermedad , Humanos , Conejos , Vibriosis/patología , Vibrio parahaemolyticus/patogenicidad , Virulencia , Proteína de Unión al GTP rac1/metabolismo
10.
Infect Immun ; 82(6): 2390-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24664508

RESUMEN

Clostridium perfringens is a causative agent of food-borne gastroenteritis for which C. perfringens enterotoxin (CPE) has been considered an essential factor. Recently, we experienced two outbreaks of food-borne gastroenteritis in which non-CPE producers of C. perfringens were strongly suspected to be the cause. Here, we report a novel enterotoxin produced by C. perfringens isolates, BEC (binary enterotoxin of C. perfringens). Culture supernatants of the C. perfringens strains showed fluid-accumulating activity in rabbit ileal loop and suckling mouse assays. Purification of the enterotoxic substance in the supernatants and high-throughput sequencing of genomic DNA of the strains revealed BEC, composed of BECa and BECb. BECa and BECb displayed limited amino acid sequence similarity to other binary toxin family members, such as the C. perfringens iota toxin. The becAB genes were located on 54.5-kb pCP13-like plasmids. Recombinant BECb (rBECb) alone had fluid-accumulating activity in the suckling mouse assay. Although rBECa alone did not show enterotoxic activity, rBECa enhanced the enterotoxicity of rBECb when simultaneously administered in suckling mice. The entertoxicity of the mutant in which the becB gene was disrupted was dramatically decreased compared to that of the parental strain. rBECa showed an ADP-ribosylating activity on purified actin. Although we have not directly evaluated whether BECb delivers BECa into cells, rounding of Vero cells occurred only when cells were treated with both rBECa and rBECb. These results suggest that BEC is a novel enterotoxin of C. perfringens distinct from CPE, and that BEC-producing C. perfringens strains can be causative agents of acute gastroenteritis in humans. Additionally, the presence of becAB on nearly identical plasmids in distinct lineages of C. perfringens isolates suggests the involvement of horizontal gene transfer in the acquisition of the toxin genes.


Asunto(s)
Clostridium perfringens/metabolismo , Enterotoxinas/metabolismo , Gastroenteritis/microbiología , ADP Ribosa Transferasas/genética , Enfermedad Aguda , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Brotes de Enfermedades , Enterotoxinas/genética , Humanos , Ratones , Peso Molecular , Conejos , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN
11.
PLoS Pathog ; 8(7): e1002803, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22829766

RESUMEN

Vibrio parahaemolyticus is one of the human pathogenic vibrios. During the infection of mammalian cells, this pathogen exhibits cytotoxicity that is dependent on its type III secretion system (T3SS1). VepA, an effector protein secreted via the T3SS1, plays a major role in the T3SS1-dependent cytotoxicity of V. parahaemolyticus. However, the mechanism by which VepA is involved in T3SS1-dependent cytotoxicity is unknown. Here, we found that protein transfection of VepA into HeLa cells resulted in cell death, indicating that VepA alone is cytotoxic. The ectopic expression of VepA in yeast Saccharomyces cerevisiae interferes with yeast growth, indicating that VepA is also toxic in yeast. A yeast genome-wide screen identified the yeast gene VMA3 as essential for the growth inhibition of yeast by VepA. Although VMA3 encodes subunit c of the vacuolar H(+)-ATPase (V-ATPase), the toxicity of VepA was independent of the function of V-ATPases. In HeLa cells, knockdown of V-ATPase subunit c decreased VepA-mediated cytotoxicity. We also demonstrated that VepA interacted with V-ATPase subunit c, whereas a carboxyl-terminally truncated mutant of VepA (VepAΔC), which does not show toxicity, did not. During infection, lysosomal contents leaked into the cytosol, revealing that lysosomal membrane permeabilization occurred prior to cell lysis. In a cell-free system, VepA was sufficient to induce the release of cathepsin D from isolated lysosomes. Therefore, our data suggest that the bacterial effector VepA targets subunit c of V-ATPase and induces the rupture of host cell lysosomes and subsequent cell death.


Asunto(s)
Sistemas de Secreción Bacterianos , Lisosomas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vibrio parahaemolyticus/metabolismo , Factores de Virulencia/metabolismo , Apoptosis , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catepsina D/metabolismo , Línea Celular Tumoral , Células HeLa , Humanos , Macrófagos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Vibrio parahaemolyticus/patogenicidad , Factores de Virulencia/biosíntesis
12.
Microorganisms ; 11(2)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36838254

RESUMEN

The nanomachine referred to as the type III secretion system (T3SS) is used by many Gram-negative pathogens or symbionts to inject their effector proteins into host cells to promote their infections or symbioses. Among the genera possessing T3SS is Vibrio, which consists of diverse species of Gammaproteobacteria including human pathogenic species and inhabits aquatic environments. We describe the genetic overview of the T3SS gene clusters in Vibrio through a phylogenetic analysis from 48 bacterial strains and a gene order analysis of the two previously known categories in Vibrio (T3SS1 and T3SS2). Through this analysis we identified a new T3SS category (named T3SS3) that shares similar core and related proteins (effectors, translocons, and chaperones) with the Ssa-Esc family of T3SSs in Salmonella, Shewanella, and Sodalis. The high similarity between T3SS3 and the Ssa-Esc family suggests a possibility of genetic exchange among marine bacteria with similar habitats.

13.
Southeast Asian J Trop Med Public Health ; 43(6): 1452-60, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23413709

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is one of the major causes of diarrhea in children and travelers in developing countries. ETEC colonization factors (CFs) are virulence determinants considered as protective antigens and major targets for vaccine development against ETEC infections. One of the most prevalent CFs, coli surface antigen 6 (CS6), a non-fimbrial polymeric protein consisting of two major subunits, CssA and CssB, is produced by approximately 25-35% of ETEC worldwide. We could isolate only CS6-producing ETEC strains from two diarrheal patients and one asymptomatic carrier, but we could not detect CssA- or CssB-specific antibodies in the feces and blood of two patients convalescing from natural ETEC infection and of an asymptomatic carrier using western blotting. Therefore, in order to protect against infection with CS6-producing ETEC, protective levels of CS6 immunity should be incorporated in any future vaccines against ETEC.


Asunto(s)
Antígenos Bacterianos/inmunología , Diarrea/inmunología , Escherichia coli Enterotoxigénica/inmunología , Infecciones por Escherichia coli/inmunología , Proteínas de Escherichia coli/inmunología , Antígenos Bacterianos/aislamiento & purificación , Portador Sano , Diarrea/microbiología , Escherichia coli Enterotoxigénica/crecimiento & desarrollo , Escherichia coli Enterotoxigénica/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/aislamiento & purificación , Heces/microbiología , Humanos , Japón/etnología , Reacción en Cadena de la Polimerasa , Serotipificación , Tailandia , Viaje
14.
Sci Adv ; 8(41): eabo3013, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36240278

RESUMEN

Colonization of the host intestine is the most important step in Vibrio cholerae infection. The toxin-coregulated pilus (TCP), an operon-encoded type IVb pilus (T4bP), plays a crucial role in this process, which requires an additional secreted protein, TcpF, encoded on the same TCP operon; however, its mechanisms of secretion and function remain elusive. Here, we demonstrated that TcpF interacts with the minor pilin, TcpB, of TCP and elucidated the crystal structures of TcpB alone and in complex with TcpF. The structural analyses reveal how TCP recognizes TcpF and its secretory mechanism via TcpB-dependent pilus elongation and retraction. Upon binding to TCP, TcpF forms a flower-shaped homotrimer with its flexible N terminus hooked onto the trimeric interface of TcpB. Thus, the interaction between the minor pilin and the N terminus of the secreted protein, namely, the T4bP secretion signal, is key for V. cholerae colonization and is a new potential therapeutic target.


Asunto(s)
Cólera , Vibrio cholerae , Proteínas Bacterianas/metabolismo , Cólera/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas , Humanos , Vibrio cholerae/metabolismo
15.
Curr Microbiol ; 62(1): 90-5, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20514485

RESUMEN

During our research into the pathogenesis of Vibrio parahaemolyticus, we noticed that the concentration of serum added to the tissue culture medium (Dulbecco's modified Eagle's medium: DMEM) greatly affected its growth. Using gel filtration column chromatography, we clearly demonstrated that serum contains not only a bacterial growth inhibitor (BGI) but also a bacterial growth enhancer (BGE) for Vibrio parahaemolyticus. Our data indicate that the BGI is transferrin, whereas the BGE seems to be an undescribed small molecule (molecular weight of 1,000-3,000 Da) and is associated with magnesium and molybdenum ions. BGE activity was not decreased by heat treatment (at 60 or 100°C for 30 min) and affected the growth rate of a wide range of Gram-negative and Gram-positive bacteria. The addition of EDTA into DMEM lowered the growth rate, whereas the addition of BGE restored the growth activity. This study suggests that sera contain a previously undescribed small BGE molecule.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Suero/química , Transferrina/metabolismo , Vibrio parahaemolyticus/crecimiento & desarrollo , Vibrio parahaemolyticus/metabolismo , Animales , Bovinos , Cromatografía en Gel , Inhibidores de Crecimiento/aislamiento & purificación , Inhibidores de Crecimiento/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/aislamiento & purificación , Magnesio/análisis , Molibdeno/análisis , Transferrina/aislamiento & purificación
16.
mSystems ; 6(6): e0099621, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34751588

RESUMEN

Conventional bacterial genome annotation provides information about coding sequences but ignores untranslated regions and operons. However, untranslated regions contain important regulatory elements as well as targets for many regulatory factors, such as small RNAs. Operon maps are also essential for functional gene analysis. In the last decade, considerable progress has been made in the study of bacterial transcriptomes through transcriptome sequencing (RNA-seq). Given the compact nature of bacterial genomes, many challenges still cannot be resolved through short reads generated using classical RNA-seq because of fragmentation and loss of the full-length information. Direct RNA sequencing is a technology that sequences the native RNA directly without information loss or bias. Here, we employed direct RNA sequencing to annotate the Vibrio parahaemolyticus transcriptome with its full features, including transcription start sites (TSSs), transcription termination sites, and operon maps. A total of 4,103 TSSs were identified. In comparison to short-read sequencing, full-length information provided a deeper view of TSS classification, showing that most internal and antisense TSSs were actually a result of gene overlap. Sequencing the transcriptome of V. parahaemolyticus grown with bile allowed us to study the landscape of pathogenicity island Vp-PAI. Some genes in this region were reannotated, providing more accurate annotation to increase precision in their characterization. Quantitative detection of operons in V. parahaemolyticus showed high complexity in some operons, shedding light on a greater extent of regulation within the same operon. Our study using direct RNA sequencing provides a quantitative and high-resolution landscape of the V. parahaemolyticus transcriptome. IMPORTANCE Vibrio parahaemolyticus is a halophilic bacterium found in the marine environment. Outbreaks of gastroenteritis resulting from seafood poisoning by these pathogens have risen over the past 2 decades. Upon ingestion by humans-often through the consumption of raw or undercooked seafood-V. parahaemolyticus senses the host environment and expresses numerous genes, the products of which synergize to synthesize and secrete toxins that can cause acute gastroenteritis. To understand the regulation of such adaptive response, mRNA transcripts must be mapped accurately. However, due to the limitations of common sequencing methods, not all features of bacterial transcriptomes are always reported. We applied direct RNA sequencing to analyze the V. parahaemolyticus transcriptome. Mapping the full features of the transcriptome is anticipated to enhance our understanding of gene regulation in this bacterium and provides a data set for future work. Additionally, this study reveals a deeper view of a complicated transcriptome landscape, demonstrating the importance of applying such methods to other bacterial models.

17.
Infect Immun ; 78(2): 603-10, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19933828

RESUMEN

Thermostable direct hemolysin (TDH), a major virulence factor of Vibrio parahaemolyticus, induces cytotoxicity in cultured cells. However, the mechanism of TDH's cytotoxic effect including its target molecules on the plasma membrane of eukaryotic cells remains unclear. In this study, we identified the role of lipid rafts, cholesterol- and sphingolipid-enriched microdomains, in TDH cytotoxicity. Treatment of cells with methyl-beta-cyclodextrin (MbetaCD), a raft-disrupting agent, inhibited TDH cytotoxicity. TDH was associated with detergent-resistant membranes (DRMs), and MbetaCD eliminated this association. In contrast, there was no such association between a nontoxic TDH mutant and DRMs. The disruption of lipid rafts neither affected hemolysis nor inhibited Ca(2+) influx into HeLa cells induced by TDH. These findings indicate that the cytotoxicity but not the hemolytic activity of TDH is dependent on lipid rafts. The exogenous and endogenous depletion of cellular sphingomyelin also prevented TDH cytotoxicity, but a direct interaction between TDH and sphingomyelin was not detected with either a lipid overlay assay or a liposome absorption test. Treatment with sphingomyelinase (SMase) at 100 mU/ml disrupted the association of TDH with DRMs but did not affect the localization of lipid raft marker proteins (caveolin-1 and flotillin-1) with DRMs. These results suggest that sphingomyelin is important for the association of TDH with lipid rafts but is not a molecular target of TDH. We hypothesize that TDH may target a certain group of rafts that are sensitive to SMase at a certain concentration, which does not affect other types of rafts.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Hemolisinas/metabolismo , Hemólisis/fisiología , Microdominios de Membrana/metabolismo , Vibrio parahaemolyticus/patogenicidad , Animales , Toxinas Bacterianas/metabolismo , Línea Celular , Eritrocitos/microbiología , Eritrocitos/patología , Células HeLa , Humanos , Esfingomielinas/metabolismo , Vibrio parahaemolyticus/metabolismo
18.
BMC Microbiol ; 10: 302, 2010 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-21110901

RESUMEN

BACKGROUND: Vibrios, which include more than 100 species, are ubiquitous in marine and estuarine environments, and several of them e.g. Vibrio cholerae, V. parahaemolyticus, V. vulnificus and V. mimicus, are pathogens for humans. Pathogenic V. parahaemolyticus strains possess two sets of genes for type III secretion system (T3SS), T3SS1 and T3SS2. The latter are critical for virulence of the organism and be classified into two distinct phylogroups, T3SS2α and T3SS2ß, which are reportedly also found in pathogenic V. cholerae non-O1/non-O139 serogroup strains. However, whether T3SS2-related genes are present in other Vibrio species remains unclear. RESULTS: We therefore examined the distribution of the genes for T3SS2 in vibrios other than V. parahaemolyticus by using a PCR assay targeting both T3SS2α and T3SS2ß genes. Among the 32 Vibrio species tested in our study, several T3SS2-related genes were detected in three species, V. cholerae, V. mimicus and V. hollisae, and most of the essential genes for type III secretion were present in T3SS2-positive V. cholerae and V. mimicus strains. Moreover, both V. mimicus strains possessing T3SS2α and T3SS2ß were identified. The gene organization of the T3SS2 gene clusters in V. mimicus strains was fundamentally similar to that of V. parahaemolyticus and V. cholerae in both T3SS2α- and T3SS2ß-possessing strains. CONCLUSIONS: This study is the first reported evidence of the presence of T3SS2 gene clusters in V. mimicus strains. This finding thus provides a new insight into the pathogenicity of the V. mimicus species.


Asunto(s)
Proteínas Bacterianas/genética , Vibriosis/microbiología , Vibrio mimicus/genética , Proteínas Bacterianas/metabolismo , Células CACO-2 , Línea Celular , Regulación Bacteriana de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Filogenia , Vibrio/clasificación , Vibrio/genética , Vibrio/metabolismo , Vibrio mimicus/clasificación , Vibrio mimicus/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
19.
Nihon Saikingaku Zasshi ; 75(4): 215-225, 2020.
Artículo en Japonés | MEDLINE | ID: mdl-33390409

RESUMEN

Vibrio parahaemolyticus, one of the Gram-negative common enteric pathogens, was first isolated in Japan in 1950. Since its discovery, this bacterium has been a major cause of food-poisoning in Japan, and its infection has recently undergone a global expansion. V. parahaemolyticus possesses a classical exotoxin, thermostable direct hemolysin, and two sets of type III secretion systems (T3SSs) that are able to inject effectors directly into host cells, which are its key virulence factors. Exotoxin/effector is exploited by many Gram-negative pathogens, and plays critical roles in pathogenesis by damaging host cells or by modulating host cell functions, through its activity on/in host cells. In recent years, functional activities of T3SS effectors produced by V. parahaemolyticus have been extensively studied, which has substantially increased our understanding of the pathogenic mechanisms of the bacterium. In paricular, some T3SS effectors of V. parahaemolyticus act as cytotoxins and thereby damage host cells. Here, I focus on these cytotoxic effectors of V. parahaemolyticus and describe recent advances in our understanding of their mechanisms of action.


Asunto(s)
Citotoxinas/toxicidad , Exotoxinas/toxicidad , Sistemas de Secreción Tipo III , Vibrio parahaemolyticus/patogenicidad , Virulencia , Enfermedades Transmitidas por los Alimentos/microbiología , Proteínas Hemolisinas , Interacciones Microbiota-Huesped , Humanos
20.
Infect Immun ; 77(2): 904-13, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19075025

RESUMEN

Vibrio parahaemolyticus is a bacterial pathogen causative of food-borne gastroenteritis. Whole-genome sequencing of V. parahaemolyticus strain RIMD2210633, which exhibits Kanagawa phenomenon (KP), revealed the presence of two sets of the genes for the type III secretion system (T3SS) on chromosomes 1 and 2, T3SS1 and T3SS2, respectively. Although T3SS2 of the RIMD2210633 strain is thought to be involved in human pathogenicity, i.e., enterotoxicity, the genes for T3SS2 have not been found in trh-positive (KP-negative) V. parahaemolyticus strains, which are also pathogenic for humans. In the study described here, the DNA region of approximately 100 kb that surrounds the trh gene of a trh-positive V. parahaemolyticus strain, TH3996, was sequenced and its genetic organization determined. This revealed the presence of the genes for a novel T3SS in this region. Animal experiments using the deletion mutant strains of a gene (vscC2) for the novel T3SS apparatus indicated that the T3SS is essential for the enterotoxicity of the TH3996 strain. PCR analysis showed that all the trh-positive V. parahaemolyticus strains tested possess the novel T3SS-related genes. Phylogenetic analysis demonstrated that although the novel T3SS is closely related to T3SS2 of KP-positive V. parahaemolyticus, it belongs to a distinctly different lineage. Furthermore, the two types of T3SS2 lineage are also found among pathogenic Vibrio cholerae non-O1/non-O139 strains. Our findings demonstrate that these two distinct types are distributed not only within a species but also beyond the species level and provide a new insight into the pathogenicity and evolution of Vibrio species.


Asunto(s)
Proteínas Bacterianas/metabolismo , Variación Genética , Proteínas Hemolisinas/metabolismo , Vibrio parahaemolyticus/clasificación , Vibrio parahaemolyticus/metabolismo , Proteínas Bacterianas/genética , Clonación Molecular , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Islas Genómicas/genética , Proteínas Hemolisinas/genética , Datos de Secuencia Molecular , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/patogenicidad , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA