Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Annu Rev Biochem ; 85: 485-514, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27145839

RESUMEN

Radical S-adenosylmethionine (SAM) enzymes catalyze an astonishing array of complex and chemically challenging reactions across all domains of life. Of approximately 114,000 of these enzymes, 8 are known to be present in humans: MOCS1, molybdenum cofactor biosynthesis; LIAS, lipoic acid biosynthesis; CDK5RAP1, 2-methylthio-N(6)-isopentenyladenosine biosynthesis; CDKAL1, methylthio-N(6)-threonylcarbamoyladenosine biosynthesis; TYW1, wybutosine biosynthesis; ELP3, 5-methoxycarbonylmethyl uridine; and RSAD1 and viperin, both of unknown function. Aberrations in the genes encoding these proteins result in a variety of diseases. In this review, we summarize the biochemical characterization of these 8 radical S-adenosylmethionine enzymes and, in the context of human health, describe the deleterious effects that result from such genetic mutations.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Cardiopatías Congénitas/genética , Errores Innatos del Metabolismo de los Metales/genética , Mutación , Enfermedades Neurodegenerativas/genética , S-Adenosilmetionina/metabolismo , Liasas de Carbono-Carbono , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/patología , Expresión Génica , Cardiopatías Congénitas/enzimología , Cardiopatías Congénitas/patología , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Errores Innatos del Metabolismo de los Metales/enzimología , Errores Innatos del Metabolismo de los Metales/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Proteínas/genética , Proteínas/metabolismo , Ácido Tióctico/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
2.
Phys Rev Lett ; 132(9): 098301, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489657

RESUMEN

Spontaneous phase separation, or demixing, is important in biological phenomena such as cell sorting. In particle-based models, an open question is whether differences in diffusivity can drive such demixing. While differential-diffusivity-induced phase separation occurs in mixtures with a packing fraction up to 0.7 [S. N. Weber et al. Binary mixtures of particles with different diffusivities demix, Phys. Rev. Lett. 116, 058301 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.058301], here we investigate whether demixing persists at even higher densities relevant for cells. For particle packing fractions between 0.7 and 1.0 the system demixes, but at packing fractions above unity the system remains mixed, exposing re-entrant behavior in the phase diagram that occurs when phase separation can no longer drive a change in entropy production at high densities. We also find that a confluent Voronoi model for tissues does not phase separate, consistent with particle-based simulations.

3.
Clin Gastroenterol Hepatol ; 21(7): 1802-1809.e6, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36967102

RESUMEN

BACKGROUND & AIMS: Early detection of pancreatic cancer (PaC) can drastically improve survival rates. Approximately 25% of subjects with PaC have type 2 diabetes diagnosed within 3 years prior to the PaC diagnosis, suggesting that subjects with type 2 diabetes are at high risk of occult PaC. We have developed an early-detection PaC test, based on changes in 5-hydroxymethylcytosine (5hmC) signals in cell-free DNA from plasma. METHODS: Blood was collected from 132 subjects with PaC and 528 noncancer subjects to generate epigenomic and genomic feature sets yielding a predictive PaC signal algorithm. The algorithm was validated in a blinded cohort composed of 102 subjects with PaC, 2048 noncancer subjects, and 1524 subjects with non-PaCs. RESULTS: 5hmC differential profiling and additional genomic features enabled the development of a machine learning algorithm capable of distinguishing subjects with PaC from noncancer subjects with high specificity and sensitivity. The algorithm was validated with a sensitivity for early-stage (stage I/II) PaC of 68.3% (95% confidence interval [CI], 51.9%-81.9%) and an overall specificity of 96.9% (95% CI, 96.1%-97.7%). CONCLUSIONS: The PaC detection test showed robust early-stage detection of PaC signal in the studied cohorts with varying type 2 diabetes status. This assay merits further clinical validation for the early detection of PaC in high-risk individuals.


Asunto(s)
Ácidos Nucleicos Libres de Células , Diabetes Mellitus Tipo 2 , Neoplasias Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Epigenómica , Detección Precoz del Cáncer , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética
4.
Cereb Cortex ; 30(1): 421-437, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31711133

RESUMEN

Recent studies in mice reveal widespread cortical signals during task performance; however, the various task-related and task-independent processes underlying this activity are incompletely understood. Here, we recorded wide-field neural activity, as revealed by GCaMP6s, from dorsal cortex while simultaneously monitoring orofacial movements, walking, and arousal (pupil diameter) of head-fixed mice performing a Go/NoGo visual detection task and examined the ability of task performance and spontaneous or task-related movements to predict cortical activity. A linear model was able to explain a significant fraction (33-55% of variance) of widefield dorsal cortical activity, with the largest factors being movements (facial, walk, eye), response choice (hit, miss, false alarm), and arousal and indicate that a significant fraction of trial-to-trial variability arises from both spontaneous and task-related changes in state (e.g., movements, arousal). Importantly, secondary motor cortex was highly correlated with lick rate, critical for optimal task performance (high d'), and was the first region to significantly predict the lick response on target trials. These findings suggest that secondary motor cortex is critically involved in the decision and performance of learned movements and indicate that a significant fraction of trial-to-trial variation in cortical activity results from spontaneous and task-related movements and variations in behavioral/arousal state.


Asunto(s)
Corteza Cerebral/fisiología , Conducta de Elección/fisiología , Movimiento , Neuronas/fisiología , Desempeño Psicomotor/fisiología , Percepción Visual/fisiología , Animales , Nivel de Alerta , Femenino , Masculino , Ratones Transgénicos , Corteza Motora/fisiología , Estimulación Luminosa
5.
J Biol Chem ; 294(5): 1609-1617, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30538130

RESUMEN

The lipoyl cofactor plays an integral role in several essential biological processes. The last step in its de novo biosynthetic pathway, the attachment of two sulfur atoms at C6 and C8 of an n-octanoyllysyl chain, is catalyzed by lipoyl synthase (LipA), a member of the radical SAM superfamily. In addition to the [4Fe-4S] cluster common to all radical SAM enzymes, LipA contains a second [4Fe-4S] auxiliary cluster, which is sacrificed during catalysis to supply the requisite sulfur atoms, rendering the protein inactive for further turnovers. Recently, it was shown that the Fe-S cluster carrier protein NfuA from Escherichia coli can regenerate the auxiliary cluster of E. coli LipA after each turnover, but the molecular mechanism is incompletely understood. Herein, using protein-protein interaction and kinetic assays as well as site-directed mutagenesis, we provide further insight into the mechanism of NfuA-mediated cluster regeneration. In particular, we show that the N-terminal A-type domain of E. coli NfuA is essential for its tight interaction with LipA. Further, we demonstrate that NfuA from Mycobacterium tuberculosis can also regenerate the auxiliary cluster of E. coli LipA. However, an Nfu protein from Staphylococcus aureus, which lacks the A-type domain, was severely diminished in facilitating cluster regeneration. Of note, addition of the N-terminal domain of E. coli NfuA to S. aureus Nfu, fully restored cluster-regenerating activity. These results expand our understanding of the newly discovered mechanism by which the auxiliary cluster of LipA is restored after each turnover.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Azufre/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Catálisis , Proteínas de Escherichia coli/química , Hierro/química , Proteínas Hierro-Azufre/química , Dominios Proteicos , Azufre/química
6.
Eur J Oral Sci ; 128(4): 317-324, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-33856710

RESUMEN

The aim was to explicate persistent psychological and bodily memories of sexual abuse and how they are expressed during dental appointments. The participants comprised 13 sexually abused individuals (11 women), who recalled and expressed these experiences during a dental appointment. They were encouraged to describe, in detail, aspects of the appointment which triggered memories of the sexual abuse. The interviews were recorded, transcribed verbatim, and analyzed using Qualitative Content Analysis. The identified overall theme illustrating the latent content was 'An echo of sexual abuse transformed into (dys) functional reactions'. The first category covering the manifest content was 'The inner invisible struggle', with two subcategories: (i) mental inscriptions of the abuse experience; and (ii) consequences of the dental encounter. The second category was 'The discoverable manifestations', with two subcategories: (i) enigmatic communication; and (ii) expressions of bodily memories. The dental appointment arouses similar psychological stressful reactions as the episodes of abuse; both implicit and explicit expressions are recognizable. Dental staff can contribute to disclosure by improved understanding of the strain a dental appointment can cause in patients who have been subjected to sexual abuse and familiarity with the associated bodily expressions.


Asunto(s)
Abuso Sexual Infantil , Niño , Atención Odontológica , Emociones , Femenino , Humanos
7.
Biochemistry ; 57(9): 1475-1490, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29298049

RESUMEN

The methylation of unactivated carbon and phosphorus centers is a burgeoning area of biological chemistry, especially given that such reactions constitute key steps in the biosynthesis of numerous enzyme cofactors, antibiotics, and other natural products of clinical value. These kinetically challenging reactions are catalyzed exclusively by enzymes in the radical S-adenosylmethionine (SAM) superfamily and have been grouped into four classes (A-D). Class B radical SAM (RS) methylases require a cobalamin cofactor in addition to the [4Fe-4S] cluster that is characteristic of RS enzymes. However, their poor solubility upon overexpression and their generally poor turnover has hampered detailed in vitro studies of these enzymes. It has been suggested that improper folding, possibly caused by insufficient cobalamin during their overproduction in Escherichia coli, leads to formation of inclusion bodies. Herein, we report our efforts to improve the overproduction of class B RS methylases in a soluble form by engineering a strain of E. coli to take in more cobalamin. We cloned five genes ( btuC, btuE, btuD, btuF, and btuB) that encode proteins that are responsible for cobalamin uptake and transport in E. coli and co-expressed these genes with those that encode TsrM, Fom3, PhpK, and ThnK, four class B RS methylases that suffer from poor solubility during overproduction. This strategy markedly enhances the uptake of cobalamin into the cytoplasm and improves the solubility of the target enzymes significantly.


Asunto(s)
Escherichia coli/metabolismo , Metiltransferasas/metabolismo , S-Adenosilmetionina/metabolismo , Vitamina B 12/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Metiltransferasas/química , Metiltransferasas/genética , S-Adenosilmetionina/química , Solubilidad
8.
Clin Chem ; 62(12): 1621-1629, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27694391

RESUMEN

BACKGROUND: Current methods for noninvasive prenatal testing (NIPT) ascertain fetal aneuploidies using either direct counting measures of DNA fragments from specific genomic regions or relative measures of single nucleotide polymorphism frequencies. Alternatively, the ratios of paralogous sequence pairs were predicted to reflect fetal aneuploidy. We developed a NIPT assay that uses paralog sequences to enable noninvasive detection of fetal trisomy 21 (T21) and trisomy 18 (T18) using cell-free DNA (cfDNA) from maternal plasma. METHODS: A total of 1060 primer pairs were designed to determine fetal aneuploidy status, fetal sex, and fetal fraction. Each library was prepared from cfDNA by coamplifying all 1060 target pairs together in a single reaction well. Products were measured using massively parallel sequencing and deviations from expected paralog ratios were determined based on the read depth from each paralog. RESULTS: We evaluated this assay in a blinded set of 480 cfDNA samples with fetal aneuploidy status determined by the MaterniT21® PLUS assay. Samples were sequenced (mean = 2.3 million reads) with 432 samples returning a result. Using the MaterniT21 PLUS assay for paired plasma aliquots from the same individuals as a reference, all 385 euploid samples, all 31 T21 samples, and 14 of 16 T18 samples were detected with no false positive results observed. CONCLUSIONS: This study introduces a novel NIPT aneuploidy detection approach using targeted sequencing of paralog motifs and establishes proof-of-concept for a potentially low-cost, highly scalable method for the identification of selected fetal aneuploidies with performance and nonreportable rate similar to other published methods.


Asunto(s)
Aneuploidia , ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Diagnóstico Prenatal , Análisis de Secuencia de ADN , Cromosomas Humanos Par 18/genética , Cromosomas Humanos Par 21/genética , ADN/análisis , Humanos
9.
Oecologia ; 180(2): 305-11, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26116266

RESUMEN

Foraging theory predicts which prey patches predators should target. However, in most habitats, what constitutes a 'patch' and how prey density is calculated are subjective concepts and depend on the spatial scale at which the predator (or scientist) is observing. Moreover, the predator's 'foraging scale' affects prey population dynamics: predators should produce directly density-dependent (DDD) prey mortality at the foraging scale, but inversely density-dependent (IDD) mortality (safety-in-numbers) at smaller scales. We performed the first experimental test of these predictions using behavioral assays with guppies (Poecilia reticulata) feeding on bloodworm 'prey' patches. The guppy's foraging scale had already been estimated in a prior study. Our experimental results confirmed theoretical predictions: predation was IDD when prey were aggregated at a scale smaller than the foraging scale, but not when prey were aggregated at larger scales. These results could be used to predict outcomes of predator-prey interactions in continuous, non-discrete habitats in the field.


Asunto(s)
Ecosistema , Mortalidad , Poecilia/fisiología , Conducta Predatoria , Animales , Cadena Alimentaria , Densidad de Población , Dinámica Poblacional
10.
Aging Cell ; 23(6): e14155, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38529808

RESUMEN

Parkinson's disease (PD) is characterised by progressive loss of dopaminergic (DA) neurons from the substantia nigra (SN) and α-synuclein (αSyn) accumulation. Age is the biggest risk factor for PD and may create a vulnerable pre-parkinsonian state, but the drivers of this association are unclear. It is known that ageing increases αSyn expression in DA neurons and that this may alter molecular processes that are central to maintaining nigrostriatal integrity. To model this, adult female Sprague-Dawley rats received a unilateral intranigral injection of adeno-associated viral (AAV) vector carrying wild-type human αSyn (AAV-αSyn) or control vector (AAV-Null). AAV-αSyn induced no detrimental effects on motor behaviour, but there was expression of human wild-type αSyn throughout the midbrain and ipsilateral striatum at 20 weeks post-surgery. Microarray analysis revealed that the gene most-upregulated in the ipsilateral SN of the AAV-αSyn group was the SKI Family Transcriptional Corepressor 1 (SKOR1). Bioenergetic state analysis of mitochondrial function found that SKOR1 overexpression reduced the maximum rate of cellular respiration in SH-SY5Y cells. Furthermore, experiments in SH-SY5Y cells revealed that SKOR1 overexpression impaired neurite growth to the same extent as αSyn, and inhibited BMP-SMAD-dependent transcription, a pathway that promotes DA neuronal survival and growth. Given the normal influence of ageing on DA neuron loss in human SN, the extent of αSyn-induced SKOR1 expression may influence whether an individual undergoes normal nigrostriatal ageing or reaches a threshold for prodromal PD. This provides new insight into mechanisms through which ageing-related increases in αSyn may influence molecular mechanisms important for the maintenance of neuronal integrity.


Asunto(s)
Envejecimiento , Ratas Sprague-Dawley , Sustancia Negra , alfa-Sinucleína , Animales , Femenino , Humanos , Ratas , Envejecimiento/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología , Regulación hacia Arriba
11.
Curr Opin Cell Biol ; 18(1): 79-85, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16361093

RESUMEN

When a spindle is positioned asymmetrically in a dividing cell, the resulting daughter cells are unequal in size. Asymmetric spindle positioning is driven by regulated forces that can pull or push a spindle. The physical and molecular mechanisms that can position spindles asymmetrically have been studied in several systems, and some themes have begun to emerge from recent research. Recent work in budding yeast has presented a model for how cytoskeletal motors and cortical capture molecules can function in orienting and positioning a spindle. The temporal regulation of microtubule-based pulling forces that move a spindle has been examined in one animal system. Although the spindle positioning force generators have not been identified in most animal systems, the forces have been found to be regulated by both PAR polarity proteins and G-protein signaling pathways in more than one animal system.


Asunto(s)
Microtúbulos/química , Huso Acromático/química , Huso Acromático/fisiología , Animales , División Celular , Polaridad Celular , Embrión no Mamífero/fisiología , Proteínas de Unión al GTP/fisiología , Modelos Biológicos , Transducción de Señal
12.
J Chem Neuroanat ; 131: 102288, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37178741

RESUMEN

Adenosine 5'-triphosphate (ATP) is the principal source of cellular energy, which is essential for neuronal health and maintenance. Parkinson's disease (PD) and other neurodegenerative disorders are characterised by impairments in mitochondrial function and reductions in cellular ATP levels. Thus there is a need to better understand the biology of intracellular regulators of ATP production, in order to inform the development of new neuroprotective therapies for diseases such as PD. One such regulator is Zinc finger HIT-domain containing protein 1 (ZNHIT1). ZNHIT1 is an evolutionarily-conserved component of a chromatin-remodelling complex, which has been recently shown to increase cellular ATP production in SH-SY5Y cells and to protect against impairments in mitochondrial function caused by alpha-synuclein, a protein which is integral to PD pathophysiology. This effect of ZNHIT1 on cellular ATP production is thought to be due to increased expression of genes associated with mitochondrial function, but it is also possible that ZNHIT1 regulates mitochondrial function by binding to mitochondrial proteins. To examine this question, we performed a combined proteomics and bioinformatics analysis to identify ZNHIT1-interacting proteins in SH-SY5Y cells. We report that ZNHIT1-interacting proteins are significantly enriched in multiple functional categories, including mitochondrial transport, ATP synthesis and ATP-dependent activity. Furthermore we also report that the correlation between ZNHIT1 and dopaminergic markers is reduced in the PD brain. These data suggest that the reported beneficial effects of ZNHIT1 on ATP production may be mediated, at least in part, by its direct interaction with mitochondrial proteins and suggest that potential alterations in ZNHIT1 in PD may contribute to the known impairments in ATP generation in midbrain dopaminergic neurons in PD.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Fosfoproteínas , Humanos , Adenosina Trifosfato/metabolismo , Neuronas Dopaminérgicas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Neuroblastoma/metabolismo , Enfermedad de Parkinson/metabolismo , Proteómica , Fosfoproteínas/metabolismo
13.
Vaccine ; 41(29): 4257-4266, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37296016

RESUMEN

INTRODUCTION: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prompted accelerated vaccine development of novel messenger RNA (mRNA)-based vaccines by Moderna and Pfizer, which received FDA Emergency Use Authorization in December 2020. The purpose of this study was to examine trends in primary series administration and multi-dose completion rates with Moderna's mRNA-1273 vaccine administered at a United States retail pharmacy. METHODS: Walgreens pharmacy data were joined to publicly available data sets to examine trends in mRNA-1273 primary series and multi-dose completion across patient race/ethnicity, age, gender, distance to first vaccination, and community characteristics. Eligible patients received their first dose of mRNA-1273 administered by Walgreens between December 18, 2020 and February 28, 2022. Variables significantly associated with on-time second dose (all patients) and third dose (immunocompromised patients) in univariate analyses were included in linear regression models. A subset of patients in selected states were studied to identify differences in early and late vaccine adoption. RESULTS: Patients (N = 4,870,915) who received ≥ 1 dose of mRNA-1273 were 57.0% White, 52.6% female, and averaged 49.4 years old. Approximately 85% of patients received a second dose during the study period. Factors associated with on-time second dose administration included older age, race/ethnicity, traveling ≤ 10 miles for the first dose, higher community-level health insurance, and residing in areas with low social vulnerability. Only 51.0% of immunocompromised patients received the third dose as recommended. Factors associated with third dose administration included older age, race/ethnicity, and small-town residence. Early adopters accounted for 60.6% of patients. Factors associated with early adoption included older age, race/ethnicity, and metropolitan residence. CONCLUSION: Over 80% of patients received their on-time second dose of mRNA-1273 vaccine per CDC recommendations. Patient demographics and community characteristics were associated with vaccine receipt and series completion. Novel approaches to facilitate series completion during a pandemic should be further studied.


Asunto(s)
COVID-19 , Farmacia , Humanos , Femenino , Estados Unidos , Persona de Mediana Edad , Masculino , Vacuna nCoV-2019 mRNA-1273 , Pandemias/prevención & control , COVID-19/prevención & control , SARS-CoV-2
14.
Mol Neurobiol ; 59(5): 2745-2757, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35175558

RESUMEN

Parkinson's disease (PD) is neurodegenerative disorder with the pathological hallmarks of progressive degeneration of midbrain dopaminergic neurons from the substantia nigra (SN), and accumulation and spread of inclusions of aggregated α-synuclein (α-Syn). Since current PD therapies do not prevent neurodegeneration, there is a need to identify therapeutic targets that can prevent α-Syn-induced reductions in neuronal survival and neurite growth. We hypothesised that genes that are normally co-expressed with the α-Syn gene (SNCA), and whose co-expression pattern is lost in PD, may be important for protecting against α-Syn-induced dopaminergic degeneration, since broken correlations can be used as an index of functional misregulation. Gene co-expression analysis of the human SN showed that nuclear zinc finger HIT-type containing 1 (ZNHIT1) is co-expressed with SNCA and that this co-expression pattern is lost in PD. Overexpression of ZNHIT1 was found to increase deposition of the H2A.Z histone variant in SH-SY5Y cells, to promote neurite growth and to prevent α-Syn-induced reductions in neurite growth and cell viability. Analysis of ZNHIT1 co-expressed genes showed significant enrichment in genes associated with mitochondrial function. In agreement, bioenergetic state analysis of mitochondrial function revealed that ZNHIT1 increased cellular ATP synthesis. Furthermore, α-Syn-induced impairments in basal respiration, maximal respiration and spare respiratory capacity were not seen in ZNHIT1-overexpressing cells. These data show that ZNHIT1 can protect against α-Syn-induced degeneration and mitochondrial dysfunction, which rationalises further investigation of ZNHIT1 as a therapeutic target for PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Neuronas Dopaminérgicas/metabolismo , Humanos , Mitocondrias/metabolismo , Neuritas/metabolismo , Enfermedad de Parkinson/patología , Fosfoproteínas , Sustancia Negra/patología , alfa-Sinucleína/metabolismo
15.
Blood Cancer Discov ; 3(4): 346-367, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35532363

RESUMEN

The conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) is a key step in DNA demethylation that is mediated by ten-eleven translocation (TET) enzymes, which require ascorbate/vitamin C. Here, we report the 5hmC landscape of normal hematopoiesis and identify cell type-specific 5hmC profiles associated with active transcription and chromatin accessibility of key hematopoietic regulators. We utilized CRISPR/Cas9 to model TET2 loss-of-function mutations in primary human hematopoietic stem and progenitor cells (HSPC). Disrupted cells exhibited increased colonies in serial replating, defective erythroid/megakaryocytic differentiation, and in vivo competitive advantage and myeloid skewing coupled with reduction of 5hmC at erythroid-associated gene loci. Azacitidine and ascorbate restored 5hmC abundance and slowed or reverted the expansion of TET2-mutant clones in vivo. These results demonstrate the key role of 5hmC in normal hematopoiesis and TET2-mutant phenotypes and raise the possibility of utilizing these agents to further our understanding of preleukemia and clonal hematopoiesis. SIGNIFICANCE: We show that 5-hydroxymethylation profiles are cell type-specific and associated with transcriptional abundance and chromatin accessibility across human hematopoiesis. TET2 loss caused aberrant growth and differentiation phenotypes and disrupted 5hmC and transcriptional landscapes. Treatment of TET2 KO HSPCs with ascorbate or azacitidine reverted 5hmC profiles and restored aberrant phenotypes. This article is highlighted in the In This Issue feature, p. 265.


Asunto(s)
Dioxigenasas , Síndromes Mielodisplásicos , Preleucemia , Azacitidina/farmacología , Cromatina/genética , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Hematopoyesis/genética , Humanos , Proteínas Proto-Oncogénicas/genética
16.
Cancer Res ; 82(21): 3888-3902, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36251389

RESUMEN

Analysis of DNA methylation is a valuable tool to understand disease progression and is increasingly being used to create diagnostic and prognostic clinical biomarkers. While conversion of cytosine to 5-methylcytosine (5mC) commonly results in transcriptional repression, further conversion to 5-hydroxymethylcytosine (5hmC) is associated with transcriptional activation. Here we perform the first study integrating whole-genome 5hmC with DNA, 5mC, and transcriptome sequencing in clinical samples of benign, localized, and advanced prostate cancer. 5hmC is shown to mark activation of cancer drivers and downstream targets. Furthermore, 5hmC sequencing revealed profoundly altered cell states throughout the disease course, characterized by increased proliferation, oncogenic signaling, dedifferentiation, and lineage plasticity to neuroendocrine and gastrointestinal lineages. Finally, 5hmC sequencing of cell-free DNA from patients with metastatic disease proved useful as a prognostic biomarker able to identify an aggressive subtype of prostate cancer using the genes TOP2A and EZH2, previously only detectable by transcriptomic analysis of solid tumor biopsies. Overall, these findings reveal that 5hmC marks epigenomic activation in prostate cancer and identify hallmarks of prostate cancer progression with potential as biomarkers of aggressive disease. SIGNIFICANCE: In prostate cancer, 5-hydroxymethylcytosine delineates oncogene activation and stage-specific cell states and can be analyzed in liquid biopsies to detect cancer phenotypes. See related article by Wu and Attard, p. 3880.


Asunto(s)
5-Metilcitosina , Neoplasias de la Próstata , Masculino , Humanos , Próstata , Biopsia
17.
Am J Obstet Gynecol ; 204(3): 205.e1-11, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21310373

RESUMEN

OBJECTIVE: We sought to evaluate a multiplexed massively parallel shotgun sequencing assay for noninvasive trisomy 21 detection using circulating cell-free fetal DNA. STUDY DESIGN: Sample multiplexing and cost-optimized reagents were evaluated as improvements to a noninvasive fetal trisomy 21 detection assay. A total of 480 plasma samples from high-risk pregnant women were employed. RESULTS: In all, 480 prospectively collected samples were obtained from our third-party storage site; 13 of these were removed due to insufficient quantity or quality. Eighteen samples failed prespecified assay quality control parameters. In all, 449 samples remained: 39 trisomy 21 samples were correctly classified; 1 sample was misclassified as trisomy 21. The overall classification showed 100% sensitivity (95% confidence interval, 89-100%) and 99.7% specificity (95% confidence interval, 98.5-99.9%). CONCLUSION: Extending the scope of previous reports, this study demonstrates that plasma DNA sequencing is a viable method for noninvasive detection of fetal trisomy 21 and warrants clinical validation in a larger multicenter study.


Asunto(s)
Síndrome de Down/diagnóstico , Síndrome de Down/genética , Análisis de Secuencia de ADN , Adolescente , Adulto , ADN/sangre , Síndrome de Down/sangre , Femenino , Humanos , Persona de Mediana Edad , Embarazo , Diagnóstico Prenatal , Análisis de Secuencia de ADN/métodos , Adulto Joven
18.
Methods Mol Biol ; 2353: 307-332, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34292556

RESUMEN

Lipoic acid is an essential sulfur-containing cofactor used by several multienzyme complexes involved in energy metabolism and the breakdown of certain amino acids. It is composed of n-octanoic acid with sulfur atoms appended at C6 and C8. Lipoic acid is biosynthesized de novo in its cofactor form, in which it is covalently bound in an amide linkage to a target lysyl residue on a lipoyl carrier protein (LCP). The n-octanoyl moiety of the cofactor is derived from type 2 fatty acid biosynthesis and is transferred to an LCP to afford an octanoyllysyl amino acid. Next, lipoyl synthase (LipA in bacteria) catalyzes the attachment of the two sulfur atoms to afford the intact cofactor. LipA is a radical S-adenosylmethionine (SAM) enzyme that contains two [4Fe-4S] clusters. One [4Fe-4S] cluster is used to facilitate a reductive cleavage of SAM to render the highly oxidizing 5'-deoxyadenosyl 5'-radical needed to abstract C6 and C8 hydrogen atoms to allow for sulfur attachment. By contrast, the second cluster is the sulfur source, necessitating its destruction during turnover. In Escherichia coli, this auxiliary cluster can be restored after each turnover by NfuA or IscU, which are two iron-sulfur cluster carrier proteins that are implicated in iron-sulfur cluster biogenesis. In this chapter, we describe methods for purifying and characterizing LipA and NfuA from Mycobacterium tuberculosis, a human pathogen for which endogenously synthesized lipoic acid is essential. These studies provide the foundation for assessing lipoic acid biosynthesis as a potential target for the design of novel antituberculosis agents.


Asunto(s)
Mycobacterium tuberculosis , Proteínas Portadoras , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Humanos , Hierro/metabolismo , Proteínas Hierro-Azufre , Metabolismo de los Lípidos , Lípidos , Mycobacterium tuberculosis/metabolismo , S-Adenosilmetionina , Azufre/metabolismo , Ácido Tióctico
19.
Mol Cancer Ther ; 20(11): 2274-2279, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34465593

RESUMEN

When tissue biopsy is not medically prudent or tissue is insufficient for molecular testing, alternative methods are needed. Because cell-free DNA (cfDNA) has been shown to provide a representative surrogate for tumor tissue, we sought to evaluate its utility in this clinical scenario. cfDNA was isolated from the plasma of patients and assayed with low-coverage (∼0.3×), genome-wide sequencing. Copy-number alterations (CNA) were identified and characterized using analytic methods originally developed for noninvasive prenatal testing (NIPT) and quantified using the genomic instability number (GIN), a metric that reflects the quantity and magnitude of CNAs across the genome. The technical variability of the GIN was first evaluated in an independent cohort comprising genome-wide sequencing results from 27,754 women who consented to have their samples used for research and whose NIPT results yielded no detected CNAs to establish a detection threshold. Subsequently, cfDNA sequencing data from 96 patients with known cancers but for whom a tissue biopsy could not be obtained are presented. An elevated GIN was detected in 35% of patients and detection rates varied by tumor origin. Collectively, CNAs covered 96.6% of all autosomes. Survival was significantly reduced in patients with an elevated GIN relative to those without. Overall, these data provide a proof of concept for the use of low-coverage, genome-wide sequencing of cfDNA from patients with cancer to obtain relevant molecular information in instances where tissue is difficult to access. These data may ultimately serve as an informative complement to other molecular tests.


Asunto(s)
Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/genética , Variaciones en el Número de Copia de ADN/genética , Neoplasias/genética , Secuenciación Completa del Genoma/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Medicina de Precisión , Adulto Joven
20.
Neuronal Signal ; 4(1): NS20200006, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32714600

RESUMEN

Neuroblastoma (NB) is a paediatric cancer that arises in the sympathetic nervous system. Patients with stage 4 tumours have poor outcomes and 20% of high-risk cases have MYCN amplification. The bone morphogenetic proteins (BMPs) play roles in sympathetic neuritogenesis, by signalling through bone morphogenetic protein receptor (BMPR)2 and either BMPR1A or BMPR1B. Alterations in BMPR2 expression have been reported in NB; it is unknown if the expression of BMPR1A or BMPR1B is altered. We report lower BMPR2 and BMPR1B, and higher BMPR1A, expression in stage 4 and in MYCN-amplified NB. Kaplan-Meier plots showed that high BMPR2 or BMPR1B expression was linked to better survival, while high BMPR1A was linked to worse survival. Gene ontology enrichment and pathway analyses revealed that BMPR2 and BMPR1B co-expressed genes were enriched in those associated with NB differentiation. BMPR1A co-expressed genes were enriched in those associated with cell proliferation. Moreover, the correlation between BMPR2 and BMPR1A was strengthened, while the correlation between BMPR2 and BMPR1B was lost, in MYCN-amplified NB. This suggested that differentiation should decrease BMPR1A and increase BMPR1B expression. In agreement, nerve growth factor treatment of cultured sympathetic neurons decreased Bmpr1a expression and increased Bmpr1b expression. Overexpression of dominant negative BMPR1B, treatment with a BMPR1B inhibitor and treatment with GDF5, which signals via BMPR1B, showed that BMPR1B signalling is required for optimal neuritogenesis in NB cells, suggesting that loss of BMPR1B may alter neuritogenesis. The present study shows that expression of distinct BMPRs is associated with different survival outcomes in NB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA