Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Neurol ; 14: 1127708, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37034078

RESUMEN

Introduction: In concussion, clinical and physiological recovery are increasingly recognized as diverging definitions. This study investigated whether central microglial activation persisted in participants with concussion after receiving an unrestricted return-to-play (uRTP) designation using [18F]DPA-714 PET, an in vivo marker of microglia activation. Methods: Eight (5 M, 3 F) current athletes with concussion (Group 1) and 10 (5 M, 5 F) healthy collegiate students (Group 2) were enrolled. Group 1 completed a pre-injury (Visit1) screen, follow-up Visit2 within 24 h of a concussion diagnosis, and Visit3 at the time of uRTP. Healthy participants only completed assessments at Visit2 and Visit3. At Visit2, all participants completed a multidimensional battery of tests followed by a blood draw to determine genotype and study inclusion. At Visit3, participants completed a clinical battery of tests, brain MRI, and brain PET; no imaging tests were performed outside of Visit3. Results: For Group 1, significant differences were observed between Visits 1 and 2 (p < 0.05) in ImPACT, SCAT5 and SOT performance, but not between Visit1 and Visit3 for standard clinical measures (all p > 0.05), reflecting clinical recovery. Despite achieving clinical recovery, PET imaging at Visit3 revealed consistently higher [18F]DPA-714 tracer distribution volume (VT) of Group 1 compared to Group 2 in 10 brain regions (p < 0.001) analyzed from 164 regions of the whole brain, most notably within the limbic system, dorsal striatum, and medial temporal lobe. No notable differences were observed between clinical measures and VT between Group 1 and Group 2 at Visit3. Discussion: Our study is the first to demonstrate persisting microglial activation in active collegiate athletes who were diagnosed with a sport concussion and cleared for uRTP based on a clinical recovery.

2.
Appl Radiat Isot ; 180: 110032, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34871885

RESUMEN

[18F]DPA-714 is a radiotracer specific to the translocator protein (TSPO) and is useful for in vivo Positron Emission Tomography imaging studies. In this report, we have developed an automated radiosynthesis of [18F]DPA-714 on a commercially-available radiosynthesis platform, which comports with USP <823> guidelines. The wide availability of the radiosynthesis module and ease of dissemination of the production sequence will facilitate preclinical and clinical research of TSPO-related pathology.

3.
J Control Release ; 331: 19-29, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33476735

RESUMEN

Phagocytic immunotherapies such as CD47 blockade have emerged as promising strategies for glioblastoma (GB) therapy, but the blood brain/tumor barriers (BBB/BTB) pose a persistent challenge for mCD47 delivery that can be overcome by focused ultrasound (FUS)-mediated BBB/BTB disruption. We here leverage immuno-PET imaging to determine how timing of [89Zr]-mCD47 injection relative to FUS impacts antibody penetrance into orthotopic murine gliomas. We then design and implement a rational paradigm for combining FUS and mCD47 for glioma therapy. We demonstrate that timing of antibody injection relative to FUS BBB/BTB disruption is a critical determinant of mCD47 access, with post-FUS injection conferring superlative antibody delivery to gliomas. We also show that mCD47 delivery across the BBB/BTB with repeat sessions of FUS can significantly constrain tumor outgrowth and extend survival in glioma-bearing mice. This study generates provocative insights for ongoing pre-clinical and clinical evaluations of FUS-mediated antibody delivery to brain tumors. Moreover, our results confirm that mCD47 delivery with FUS is a promising therapeutic strategy for GB therapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Animales , Barrera Hematoencefálica , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Glioblastoma/terapia , Glioma/tratamiento farmacológico , Ratones , Microburbujas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA