Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 572(7767): 86-90, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31332388

RESUMEN

Special quantum states are used in metrology to achieve sensitivities below the limits established by classically behaving states1,2. In bosonic interferometers, squeezed states3, number states4,5 and 'Schrödinger cat' states5 have been implemented on various platforms and have demonstrated improved measurement precision over interferometers using coherent states6,7. Another metrologically useful state is an equal superposition of two eigenstates with maximally different energies; this state ideally reaches the full interferometric sensitivity allowed by quantum mechanics8,9. Here we demonstrate the enhanced sensitivity of these quantum states in the case of a harmonic oscillator. We extend an existing experimental technique10 to create number states of order up to n = 100 and to generate superpositions of a harmonic oscillator ground state and a number state of the form [Formula: see text] with n up to 18 in the motion of a single trapped ion. Although experimental imperfections prevent us from reaching the ideal Heisenberg limit, we observe enhanced sensitivity to changes in the frequency of the mechanical oscillator. This sensitivity initially increases linearly with n and reaches a maximum at n = 12, where we observe a metrological enhancement of 6.4(4) decibels (the uncertainty is one standard deviation of the mean) compared to an ideal measurement on a coherent state with the same average occupation number. Such measurements should provide improved characterization of motional decoherence, which is an important source of error in quantum information processing with trapped ions11,12. It should also be possible to use the quantum advantage from number-state superpositions to achieve precision measurements in other harmonic oscillator systems.

2.
Phys Rev Lett ; 126(25): 250507, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34241508

RESUMEN

Characterization and suppression of noise are essential for the control of harmonic oscillators in the quantum regime. We measure the noise spectrum of a quantum harmonic oscillator from low frequency to near the oscillator resonance by sensing its response to amplitude modulated periodic drives with a qubit. Using the motion of a trapped ion, we experimentally demonstrate two different implementations with combined sensitivity to noise from 500 Hz to 600 kHz. We apply our method to measure the intrinsic noise spectrum of an ion trap potential in a previously unaccessed frequency range.

3.
Phys Rev X ; 10(3)2020.
Artículo en Inglés | MEDLINE | ID: mdl-34408918

RESUMEN

We report on the observation of magnetic Feshbach resonances in a Fermi-Fermi mixture of ultracold atoms with extreme mass imbalance and on their unique p-wave dominated three-body recombination processes. Our system consists of open-shell alkali-metal 6Li and closed-shell 173Yb atoms, both spin polarized and held at various temperatures between 1 and 20 µK. We confirm that Feshbach resonances in this system are solely the result of a weak separation-dependent hyperfine coupling between the electronic spin of 6Li and the nuclear spin of 173Yb. Our analysis also shows that three-body recombination rates are controlled by the identical fermion nature of the mixture, even in the presence of s-wave collisions between the two species and with recombination rate coefficients outside the Wigner threshold regime at our lowest temperature. Specifically, a comparison of experimental and theoretical line shapes of the recombination process indicates that the characteristic asymmetric line shape as a function of applied magnetic field and a maximum recombination rate coefficient that is independent of temperature can only be explained by triatomic collisions with nonzero, p-wave total orbital angular momentum. The resonances can be used to form ultracold doublet ground-state molecules and to simulate quantum superfluidity in mass-imbalanced mixtures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA