Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 106(17): 7221-6, 2009 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-19359483

RESUMEN

Nonclassical estrogen receptor alpha (ERalpha) signaling can mediate E(2) negative feedback actions in the reproductive axis; however, downstream pathways conveying these effects remain unclear. These studies tested the hypothesis that p21-activated kinase 1 (PAK1), a serine/threonine kinase rapidly activated by E(2) in nonneural cells, functions as a downstream node for E(2) signaling pathways in cells of the preoptic area, and it may thereby mediate E(2) negative feedback effects. Treatment of ovariectomized (OVX) rats with estradiol benzoate (EB) caused rapid and transient induction of phosphorylated PAK1 immunoreactivity in the medial preoptic nucleus (MPN) but not the arcuate nucleus. To determine whether rapid induction of PAK phosphorylation by E(2) is mediated by nonclassical [estrogen response element (ERE)-independent] ERalpha signaling, we used female ERalpha null (ERalpha(-/-)) mice possessing an ER knock-in mutation (E207A/G208A; AA), in which the mutant ERalpha is incapable of binding DNA and can signal only through membrane-initiated or ERE-independent genotropic pathways (ERalpha(-/AA) mice). After 1-h EB treatment, the number of pPAK1-immunoreactive cells in the MPN was increased in both wild-type (ERalpha(+/+)) and ERalpha(-/AA) mice but was unchanged in ERalpha(-/-) mice. Serum luteinizing hormone (LH) was likewise suppressed within 1 h after EB treatment in ERalpha(+/+) and ERalpha(-/AA) but not ERalpha(-/ -) mice. In OVX rats, 5-min intracerebroventricular infusion of a PAK inhibitor peptide but not control peptide blocked rapid EB suppression of LH secretion. Taken together, our findings implicate PAK1 activation subsequent to nonclassical ERalpha signaling as an important component of the negative feedback actions of E(2) in the brain.


Asunto(s)
Estradiol/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Quinasas p21 Activadas/metabolismo , Animales , Receptor alfa de Estrógeno/deficiencia , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Hormona Luteinizante/metabolismo , Ratones , Ratones Noqueados , Fosforilación , Ratas , Transducción de Señal , Factores de Tiempo , Quinasas p21 Activadas/genética
2.
Horm Behav ; 55(2): 366-74, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18950632

RESUMEN

ATP-sensitive potassium (K(+)(ATP)) channels regulate cell excitability and are expressed in steroid-responsive brain regions involved in sexual behavior, such as the preoptic area (POA) and medial basal hypothalamus (MBH). We hypothesized that K(+)(ATP) channels serve as a mechanism by which testosterone can control the electrical activity of neurons and consequently elicit male sexual responsiveness. RT-PCR analysis indicated that castration induces, while testosterone inhibits, mRNA expression of the K(+)(ATP) channel subunit Kir6.2 in both the POA and MBH of adult male rats. Intracerebral infusion of the pharmacological K(+)(ATP) channel inhibitor tolbutamide increased the proportion of long-term castrates displaying sexual behavior and restored mount frequency, intromission frequency, and copulatory efficacy to values observed in testes-intact animals. Infusions of tolbutamide, but not vehicle, also decreased latencies to mount and intromit in castrated males. Unilateral tolbutamide infusion directly into the POA significantly reduced mount latency of castrates; however, it did not affect other copulatory measures, suggesting that blockade of K(+)(ATP) channels in additional brain regions may be necessary to recover the full range of sexual behavior. These data indicate that blockade of K(+)(ATP) channels is sufficient to elicit the male sexual response in the absence of testosterone. Our observations are consistent with the hypothesis that testosterone modulates male sexual behavior by regulating K(+)(ATP) channels in the brain. Decreased channel expression or channel blockade may increase the excitability of androgen-target neurons, rendering them more sensitive to the hormonal, chemical, and somatosensory inputs they receive, and potentially increase secretion of neurotransmitters that facilitate sexual behavior.


Asunto(s)
Encéfalo/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Conducta Sexual Animal/fisiología , Testosterona/metabolismo , Análisis de Varianza , Animales , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Actividad Motora/efectos de los fármacos , Orquiectomía , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/genética , Área Preóptica/efectos de los fármacos , Área Preóptica/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Conducta Sexual Animal/efectos de los fármacos , Testosterona/administración & dosificación , Tolbutamida/administración & dosificación
3.
Mol Cell Endocrinol ; 290(1-2): 24-30, 2008 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-18534740

RESUMEN

Estrogen receptor alpha (ERalpha) mediates estrogen (E2) actions in the brain and is critical for normal reproductive function and behavior. In the classical pathway, ERalpha binds to estrogen response elements (EREs) to regulate gene transcription. ERalpha can also participate in several non-classical pathways, including ERE-independent gene transcription via protein-protein interactions with transcription factors and rapid, non-genotropic pathways. To distinguish between ERE-dependent and ERE-independent mechanisms of E2 action in vivo, we have created ERalpha null mice that possess an ER knock-in mutation (E207A/G208A; "AA"), in which the mutant ERalpha cannot bind to DNA but retains activity in ERE-independent pathways (ERalpha(-/AA) mice). Understanding the molecular mechanisms of ERalpha action will be helpful in developing pharmacological therapies that differentiate between ERE-dependent and ERE-independent processes. This review focuses on how the ERalpha(-/AA) model has contributed to our knowledge of ERalpha signaling mechanisms in estrogen regulation of the reproductive axis and sexual behavior.


Asunto(s)
Estrógenos/metabolismo , Receptores de Estrógenos/metabolismo , Animales , Estrógenos/farmacología , Retroalimentación Fisiológica/efectos de los fármacos , Ratones , Ratones Noqueados , Reproducción/efectos de los fármacos , Conducta Sexual Animal/efectos de los fármacos
4.
Endocrinology ; 148(11): 5288-94, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17673514

RESUMEN

Estrogen receptor (ER)-alpha mediates estradiol (E(2)) actions in the male gonads and brain and is critical for normal male reproductive function. In the classical pathway, ERalpha binds to estrogen response elements (EREs) to regulate gene transcription. ERalpha can also regulate gene transcription independently of EREs via protein-protein interactions with transcription factors and additionally signal via rapid, nongenomic pathways originating at the cell membrane. This study assessed the degree to which ERE-independent ERalpha signaling can rescue the disrupted masculine sexual behaviors and elevated serum testosterone (T) levels that have been shown to result from ERalpha gene deletion. We utilized male ERalpha null mice that possess a ER knock-in mutation (E207A/G208A; AA), in which the mutant ERalpha is incapable of binding to DNA and can signal only through ERE-independent pathways (ERalpha(-/AA) mice). We found that sexual behavior, including mounting, is virtually absent in ERalpha(-/-) and ERalpha(-/AA) males, suggesting that ERE-independent signaling is insufficient to maintain any degree of normal sexual behavior in the absence of ERE binding. By contrast, ERE-independent signaling in the ERalpha(-/AA) mouse is sufficient to restore serum T levels to values observed in wild-type males. These data indicate that binding of ERs to EREs mediates most if not all of E(2)'s effects on male sexual behavior, whereas ERE-independent ERalpha signaling may mediate E(2)'s inhibitory effects on T production.


Asunto(s)
Estradiol/fisiología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/fisiología , Elementos de Respuesta/fisiología , Conducta Sexual Animal/fisiología , Testosterona/metabolismo , Animales , Femenino , Hormona Folículo Estimulante/sangre , Hormona Luteinizante/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores Sexuales , Transducción de Señal/fisiología , Testosterona/sangre
5.
Horm Behav ; 53(5): 673-92, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18374922

RESUMEN

Androgens exert significant organizational and activational effects on the nervous system and behavior. Despite the fact that female mammals generally produce low levels of androgens, relative to the male of the same species, increasing evidence suggests that androgens can exert profound effects on the normal physiology and behavior of females during fetal, neonatal, and adult stages of life. This review examines the effects of exposure to androgens at three stages of development--as an adult, during early postnatal life and as a fetus, on reproductive hormone secretions in female rats. We examine the effects of androgen exposure both as a model of neuroendocrine sexual differentiation and with respect to the role androgens play in the normal female. We then discuss the hypothesis that androgens may cause epigenetic modification of estrogen target genes in the brain. Finally we consider the clinical consequences of excess androgen exposure in women.


Asunto(s)
Andrógenos/fisiología , Sistemas Neurosecretores/fisiología , Envejecimiento/fisiología , Andrógenos/farmacología , Animales , Animales Recién Nacidos , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Luteinizante/metabolismo , Ratones , Sistemas Neurosecretores/efectos de los fármacos , Ovulación/fisiología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA