Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37177228

RESUMEN

Improving soil quality is of growing interest and, among optimal solutions, the reuse and recycling of biopolymers of pelt waste from the tannery industry have been proposed, one of them being for collagen hydrolysate with micronutrients and polymers incorporated, to be used as fertilizers for poor soils rehabilitation. As functionalization agents, polyacrylamide, starch and dolomite were included into biopolymer matrixes in order to enhance their specific efficiency. These fertilizers were adequately characterized for their physical-chemical properties, including nutrient content, and tested on three poor soils, while a fourth sample of normal soil was chosen for comparative purposes. These soils were also characterized for their texture and physical-chemical properties in order to establish the fertility state of the soils as a function of nutrient content. In this respect, a series of agrochemical tests were developed at laboratory scale, simulating real agriculture environments in a vegetation room, where a significant plant growth in height was observed for all the agro-hydrogels with nutrients encapsulated, and multiplication of the nodosities number was observed in the case of the soybean culture. The most significant effect was obtained in the case of the fertilizer functionalized with starch. Finally, the application dose of the organic fertilizers for specific culture plants was estimated, such as field cultures (cereals, corn), field vegetables, vineyards or fruit-growing plantations. These agro-collagen fertilizers are particularly recommended for amendment of field cereals and vegetables. The novelty of this study mainly consists of the recovery and recycling of the pelt waste as efficient fertilizers after their adequate functionalization with synthetic or natural biopolymers.

2.
Polymers (Basel) ; 14(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35956683

RESUMEN

Recent trends in ecological agriculture practices are focused on finding optimal solutions for reuse and recycling of pelt waste from tannery industry. In this context, new collagen-based hydrogels with NPK nutrients encapsulated have been functionalized with synthetic and natural additives, including starch and dolomite, to be used as composite fertilizers. Possible interaction mechanisms are presented in case of each synthetic or natural additive, ranging from strong linkages as a result of esterification reactions until hydrogen bonds and ionic valences. Such interactions are responsible for nutrient release towards soil and plants. These fertilizers have been adequately characterized for their physical chemical and biochemical properties, including nutrient content, and tested on three Greek poor soils and one Romanian normal soil samples. A series of agrochemical tests have been developed by evaluation of uptake and leaching of nutrients on mixtures of sand and soils. It was observed that the clay soil exhibits a higher adsorption capacity than the loam soil for most of nutrients leached from the composite fertilizers tested, with this being correlated with a slower control release towards cultivated plants, thus assuring efficiency of these collagen-based composite fertilizers. The most significant effect was obtained in the case of collagen-based fertilizer functionalized with starch.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA