Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Microbiol ; 78(2): 449-463, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33394083

RESUMEN

Psychobiotics are a special class of probiotics, which deliver mental health benefits to individuals. They differ from conventional probiotics in their ability to produce or stimulate the production of neurotransmitters, short-chain fatty acids, enteroendocrine hormones and anti-inflammatory cytokines. Owing to this potential, psychobiotics have a broad spectrum of applications ranging from mood and stress alleviation to being an adjuvant in therapeutic treatment for various neurodevelopment and neurodegenerative disorders. The common psychobiotic bacteria belong to the family Lactobacilli, Streptococci, Bifidobacteria, Escherichia and Enterococci. The two-way crosstalk between the brain and the gastrointestinal system is influenced by these bacteria. The neurons present in the enteric nervous system interact directly with the neurochemicals produced by microbiota of the gut, thereby influencing the signaling to central nervous system. The present review highlights the scope and advancements made in the field, enlisting numerous commercial psychobiotic products that have flooded the market. In the latter part we discuss the potential concerns with respect to psychobiotics, such as the effects due to withdrawal, compatibility with immunocompromised patients, and the relatively unregulated probiotic market.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Probióticos , Encéfalo , Ácidos Grasos Volátiles , Humanos
2.
J Biomol Struct Dyn ; : 1-18, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319037

RESUMEN

Lung cancer poses a significant health threat globally, especially in regions like India, with 5-year survival rates remain alarmingly low. Our study aimed to uncover key markers for effective treatment and early detection. We identified specific genes related to lung cancer using the BioXpress database and delved into their roles through DAVID enrichment analysis. By employing network theory, we explored the intricate interactions within lung cancer networks, identifying ASPM and MKI67 as crucial regulator genes. Predictions of microRNA and transcription factor interactions provided additional insights. Examining gene expression patterns using GEPIA and KM Plotter revealed the clinical relevance of these key genes. In our pursuit of targeted therapies, Drug Bank pointed to methotrexate as a potential drug for the identified key regulator genes. Confirming this, molecular docking studies through Swiss Dock showed promising binding interactions. To ensure stability, we conducted molecular dynamics simulations using the AMBER 16 suite. In summary, our study pinpoints ASPM and MKI67 as vital regulators in lung cancer networks. The identification of hub genes and functional pathways enhances our understanding of molecular processes, offering potential therapeutic targets. Importantly, methotrexate emerged as a promising drug candidate, supported by robust docking and simulation studies. These findings lay a solid foundation for further experimental validations and hold promise for advancing personalized therapeutic strategies in lung cancer.Communicated by Ramaswamy H. Sarma.

3.
Prog Biomater ; 9(3): 81-95, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32654045

RESUMEN

The evolving technology of nanoparticle synthesis, especially silver nanoparticle (AgNPs) has already been applied in various fields i.e., electronics, optics, catalysis, food, health and environment. With advancement in research, it is possible to develop nanoparticles of various size, shape, morphology, and surface to volume ratio utilizing biological systems. A number of different agents and methods can be employed to develop choice based AgNPs using algae, plants, fungi and bacteria. The use of plant extracts to produce AgNPs appears to be more convenient, as the method is simple, environmental friendly and inexpensive, also requiring a single-step. The microbial synthesis of AgNps showed intracellular and extracellular mechanisms to reduce metal ions into nanoparticles. Studies have shown that different size (1-100 nm) and shapes (spherical, triangular and hexagonal etc.) of nanoparticles can be produced from various biological routes and these diverse nanoparticles have various functions and usability i.e., agriculture, medical-science, textile, cosmetics and environment protection. The present review provides an overview of various biological systems used for AgNP synthesis, its underlying mechanisms, further highlighting the current research and applications of variable shape and sized AgNPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA