Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 111(42): E4429-38, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288731

RESUMEN

ErbB2 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2), a receptor tyrosine kinase of the ErbB family, is overexpressed in around 25% of breast cancers. In addition to forming a heterodimer with other ErbB receptors in response to ligand stimulation, ErbB2 can be activated in a ligand-independent manner. We report here that Erbin, an ErbB2-interacting protein that was thought to act as an antitumor factor, is specifically expressed in mammary luminal epithelial cells and facilitates ErbB2-dependent proliferation of breast cancer cells and tumorigenesis in MMTV-neu transgenic mice. Disruption of their interaction decreases ErbB2-dependent proliferation, and deletion of the PDZ domain in Erbin hinders ErbB2-dependent tumor development in MMTV-neu mice. Mechanistically, Erbin forms a complex with ErbB2, promotes its interaction with the chaperon protein HSP90, and thus prevents its degradation. Finally, ErbB2 and Erbin expression correlates in human breast tumor tissues. Together, these observations establish Erbin as an ErbB2 regulator for breast tumor formation and progression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Receptor ErbB-2/metabolismo , Adulto , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Progresión de la Enfermedad , Femenino , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Células HEK293 , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Mutación , Unión Proteica
2.
BMC Med Genomics ; 17(1): 231, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272120

RESUMEN

BACKGROUND: Bipolar disorder (BPD) is a kind of manic and depressive phase alternate episodes of serious mental illness, and it is correlated with well-documented cortical brain abnormalities. Emerging evidence supports that autophagy dysfunction in neuronal system contributes to pathophysiological changes in neurological disease. However, the role of autophagy in bipolar disorder has rarely been elucidated. This study aimed to identify the autophagy-related gene as a potential biomarker Correlated to immune infiltration in BPD. METHODS: The microarray dataset GSE23848 and autophagy-related genes (ARGs) were downloaded. Differentially expressed genes (DEGs) between normal and BPD samples were screened using the R software. Machine learning algorithms were performed to screen the significant candidate biomarker from autophagy-related differentially expressed genes (ARDEGs). The correlation between the screened ARDEGs and infiltrating immune cells was explored through correlation analysis. RESULTS: In this study, the autophagy pathway was abundantly enriched and activated in BPD, as indicated by Pathway enrichment analysis. We identified 16 ARDEGs in BPD compared to the normal group. A signature of 4 ARDEGs (ERN1, ATG3, CTSB, and EIF2AK3) was screened. ROC analysis showed that the above genes have good diagnostic performance. In addition, immune correlation analysis considered that the above four genes significantly correlated with immune cells in BPD. CONCLUSIONS: Autophagy - immune cell axis mediates pathophysiological changes in BPD. Four important ARDEGs are prospective to be potential biomarkers associated with immune infiltration in BPD and helpful for the prediction or diagnosis of BPD.


Asunto(s)
Autofagia , Biomarcadores , Trastorno Bipolar , Biología Computacional , Trastorno Bipolar/genética , Trastorno Bipolar/inmunología , Humanos , Autofagia/genética , Perfilación de la Expresión Génica , Proteínas Relacionadas con la Autofagia/genética , Aprendizaje Automático
3.
Neuron ; 111(5): 696-710.e9, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603584

RESUMEN

The crosstalk between the nervous and immune systems has gained increasing attention for its emerging role in neurological diseases. Radiation-induced brain injury (RIBI) remains the most common medical complication of cranial radiotherapy, and its pathological mechanisms have yet to be elucidated. Here, using single-cell RNA and T cell receptor sequencing, we found infiltration and clonal expansion of CD8+ T lymphocytes in the lesioned brain tissues of RIBI patients. Furthermore, by strategies of genetic or pharmacologic interruption, we identified a chemotactic action of microglia-derived CCL2/CCL8 chemokines in mediating the infiltration of CCR2+/CCR5+ CD8+ T cells and tissue damage in RIBI mice. Such a chemotactic axis also participated in the progression of cerebral infarction in the mouse model of ischemic injury. Our findings therefore highlight the critical role of microglia in mediating the dysregulation of adaptive immune responses and reveal a potential therapeutic strategy for non-infectious brain diseases.


Asunto(s)
Lesiones Encefálicas , Microglía , Animales , Ratones , Microglía/fisiología , Linfocitos T CD8-positivos/metabolismo , Lesiones Encefálicas/patología , Encéfalo/metabolismo , Quimiocina CCL2/metabolismo , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA