Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Ann Neurol ; 92(6): 1030-1045, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054734

RESUMEN

OBJECTIVE: The purpose of this study was to identify subtypes of amyotrophic lateral sclerosis (ALS) by comparing patterns of neurodegeneration using brain magnetic resonance imaging (MRI) and explore their phenotypes. METHODS: We performed T1-weighted and diffusion tensor imaging in 488 clinically well-characterized patients with ALS and 338 control subjects. Measurements of whole-brain cortical thickness and white matter connectome fractional anisotropy were adjusted for disease-unrelated variation. A probabilistic network-based clustering algorithm was used to divide patients into subgroups of similar neurodegeneration patterns. Clinical characteristics and cognitive profiles were assessed for each subgroup. In total, 512 follow-up scans were used to validate clustering results longitudinally. RESULTS: The clustering algorithm divided patients with ALS into 3 subgroups of 187, 163, and 138 patients. All subgroups displayed involvement of the precentral gyrus and are characterized, respectively, by (1) pure motor involvement (pure motor cluster [PM]), (2) orbitofrontal and temporal involvement (frontotemporal cluster [FT]), and (3) involvement of the posterior cingulate cortex, parietal white matter, temporal operculum, and cerebellum (cingulate-parietal-temporal cluster [CPT]). These subgroups had significantly distinct clinical profiles regarding male-to-female ratio, age at symptom onset, and frequency of bulbar symptom onset. FT and CPT revealed higher rates of cognitive impairment on the Edinburgh cognitive and behavioral ALS screen (ECAS). Longitudinally, clustering remained stable: at 90.4% of their follow-up visits, patients clustered in the same subgroup as their baseline visit. INTERPRETATION: ALS can manifest itself in 3 main patterns of cerebral neurodegeneration, each associated with distinct clinical characteristics and cognitive profiles. Besides the pure motor and frontotemporal dementia (FTD)-like variants of ALS, a new neuroimaging phenotype has emerged, characterized by posterior cingulate, parietal, temporal, and cerebellar involvement. ANN NEUROL 2022;92:1030-1045.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Masculino , Femenino , Humanos , Esclerosis Amiotrófica Lateral/genética , Imagen de Difusión Tensora , Imagen por Resonancia Magnética , Demencia Frontotemporal/patología , Análisis por Conglomerados
2.
Ann Neurol ; 87(5): 725-738, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32072667

RESUMEN

OBJECTIVE: Clinical trials in amyotrophic lateral sclerosis (ALS) continue to rely on survival or functional scales as endpoints, despite the emergence of quantitative biomarkers. Neuroimaging-based biomarkers in ALS have been shown to detect ALS-associated pathology in vivo, although anatomical patterns of disease spread are poorly characterized. The objective of this study is to simulate disease propagation using network analyses of cerebral magnetic resonance imaging (MRI) data to predict disease progression. METHODS: Using brain networks of ALS patients (n = 208) and matched controls across longitudinal time points, network-based statistics unraveled progressive network degeneration originating from the motor cortex and expanding in a spatiotemporal manner. We applied a computational model to the MRI scan of patients to simulate this progressive network degeneration. Simulated aggregation levels at the group and individual level were validated with empirical impairment observed at later time points of white matter and clinical decline using both internal and external datasets. RESULTS: We observe that computer-simulated aggregation levels mimic true disease patterns in ALS patients. Simulated patterns of involvement across cortical areas show significant overlap with the patterns of empirically impaired brain regions on later scans, at both group and individual levels. These findings are validated using an external longitudinal dataset of 30 patients. INTERPRETATION: Our results are in accordance with established pathological staging systems and may have implications for patient stratification in future clinical trials. Our results demonstrate the utility of computational models in ALS to predict disease progression and underscore their potential as a prognostic biomarker. ANN NEUROL 2020;87:725-738.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Conectoma/métodos , Aprendizaje Profundo , Neuroimagen/métodos , Anciano , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Progresión de la Enfermedad , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad
3.
Neuroimage ; 216: 116805, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32335264

RESUMEN

Functional brain networks are shaped and constrained by the underlying structural network. However, functional networks are not merely a one-to-one reflection of the structural network. Several theories have been put forward to understand the relationship between structural and functional networks. However, it remains unclear how these theories can be unified. Two existing recent theories state that 1) functional networks can be explained by all possible walks in the structural network, which we will refer to as the series expansion approach, and 2) functional networks can be explained by a weighted combination of the eigenmodes of the structural network, the so-called eigenmode approach. To elucidate the unique or common explanatory power of these approaches to estimate functional networks from the structural network, we analysed the relationship between these two existing views. Using linear algebra, we first show that the eigenmode approach can be written in terms of the series expansion approach, i.e., walks on the structural network associated with different hop counts correspond to different weightings of the eigenvectors of this network. Second, we provide explicit expressions for the coefficients for both the eigenmode and series expansion approach. These theoretical results were verified by empirical data from Diffusion Tensor Imaging (DTI) and functional Magnetic Resonance Imaging (fMRI), demonstrating a strong correlation between the mappings based on both approaches. Third, we analytically and empirically demonstrate that the fit of the eigenmode approach to measured functional data is always at least as good as the fit of the series expansion approach, and that errors in the structural data lead to large errors of the estimated coefficients for the series expansion approach. Therefore, we argue that the eigenmode approach should be preferred over the series expansion approach. Results hold for eigenmodes of the weighted adjacency matrices as well as eigenmodes of the graph Laplacian. â€‹Taken together, these results provide an important step towards unification of existing theories regarding the structure-function relationships in brain networks.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo , Imagen de Difusión Tensora/métodos , Red Nerviosa , Adulto , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conjuntos de Datos como Asunto , Humanos , Modelos Estadísticos , Red Nerviosa/anatomía & histología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología
4.
Neuroimage ; 142: 324-336, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27498371

RESUMEN

Neuronal oscillations exist across a broad frequency spectrum, and are thought to provide a mechanism of interaction between spatially separated brain regions. Since ongoing mental activity necessitates the simultaneous formation of multiple networks, it seems likely that the brain employs interactions within multiple frequency bands, as well as cross-frequency coupling, to support such networks. Here, we propose a multi-layer network framework that elucidates this pan-spectral picture of network interactions. Our network consists of multiple layers (frequency-band specific networks) that influence each other via inter-layer (cross-frequency) coupling. Applying this model to MEG resting-state data and using envelope correlations as connectivity metric, we demonstrate strong dependency between within layer structure and inter-layer coupling, indicating that networks obtained in different frequency bands do not act as independent entities. More specifically, our results suggest that frequency band specific networks are characterised by a common structure seen across all layers, superimposed by layer specific connectivity, and inter-layer coupling is most strongly associated with this common mode. Finally, using a biophysical model, we demonstrate that there are two regimes of multi-layer network behaviour; one in which different layers are independent and a second in which they operate highly dependent. Results suggest that the healthy human brain operates at the transition point between these regimes, allowing for integration and segregation between layers. Overall, our observations show that a complete picture of global brain network connectivity requires integration of connectivity patterns across the full frequency spectrum.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Magnetoencefalografía/métodos , Modelos Teóricos , Red Nerviosa/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
5.
Exp Neurol ; 354: 114111, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35569510

RESUMEN

Deep brain stimulation (DBS) has been successfully applied in various neurodegenerative diseases as an effective symptomatic treatment. However, its mechanisms of action within the brain network are still poorly understood. Many virtual DBS models analyze a subnetwork around the basal ganglia and its dynamics as a spiking network with their details validated by experimental data. However, connectomic evidence shows widespread effects of DBS affecting many different cortical and subcortical areas. From a clinical perspective, various effects of DBS besides the motoric impact have been demonstrated. The neuroinformatics platform The Virtual Brain (TVB) offers a modeling framework allowing us to virtually perform stimulation, including DBS, and forecast the outcome from a dynamic systems perspective prior to invasive surgery with DBS lead placement. For an accurate prediction of the effects of DBS, we implement a detailed spiking model of the basal ganglia, which we combine with TVB via our previously developed co-simulation environment. This multiscale co-simulation approach builds on the extensive previous literature of spiking models of the basal ganglia while simultaneously offering a whole-brain perspective on widespread effects of the stimulation going beyond the motor circuit. In the first demonstration of our model, we show that virtual DBS can move the firing rates of a Parkinson's disease patient's thalamus - basal ganglia network towards the healthy regime while, at the same time, altering the activity in distributed cortical regions with a pronounced effect in frontal regions. Thus, we provide proof of concept for virtual DBS in a co-simulation environment with TVB. The developed modeling approach has the potential to optimize DBS lead placement and configuration and forecast the success of DBS treatment for individual patients.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Ganglios Basales/fisiología , Encéfalo , Humanos , Enfermedad de Parkinson/terapia , Tálamo/fisiología
6.
Neurology ; 94(24): e2592-e2604, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32414878

RESUMEN

OBJECTIVE: To understand the progressive nature of amyotrophic lateral sclerosis (ALS) by investigating differential brain patterns of gray and white matter involvement in clinically or genetically defined subgroups of patients using cross-sectional, longitudinal, and multimodal MRI. METHODS: We assessed cortical thickness, subcortical volumes, and white matter connectivity from T1-weighted and diffusion-weighted MRI in 292 patients with ALS (follow-up: n = 150) and 156 controls (follow-up: n = 72). Linear mixed-effects models were used to assess changes in structural brain measurements over time in patients compared to controls. RESULTS: Patients with a C9orf72 mutation (n = 24) showed widespread gray and white matter involvement at baseline, and extensive loss of white matter integrity in the connectome over time. In C9orf72-negative patients, we detected cortical thinning of motor and frontotemporal regions, and loss of white matter integrity of connections linked to the motor cortex. Patients with spinal onset displayed widespread white matter involvement at baseline and gray matter atrophy over time, whereas patients with bulbar onset started out with prominent gray matter involvement. Patients with unaffected cognition or behavior displayed predominantly motor system involvement, while widespread cerebral changes, including frontotemporal regions with progressive white matter involvement over time, were associated with impaired behavior or cognition. Progressive loss of gray and white matter integrity typically occurred in patients with shorter disease durations (<13 months), independent of progression rate. CONCLUSIONS: Heterogeneity of phenotype and C9orf72 genotype relates to distinct patterns of cerebral degeneration. We demonstrate that imaging studies have the potential to monitor disease progression and early intervention may be required to limit cerebral degeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Anciano , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Conducta , Encéfalo/patología , Proteína C9orf72/genética , Cognición , Estudios Transversales , Imagen de Difusión por Resonancia Magnética , Progresión de la Enfermedad , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Imagen Multimodal , Mutación , Estudios Prospectivos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
7.
Neuroimage Clin ; 24: 101984, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31499409

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease characterized by both upper and lower motor neuron degeneration. While neuroimaging studies of the brain can detect upper motor neuron degeneration, these brain MRI scans also include the upper part of the cervical spinal cord, which offers the possibility to expand the focus also towards lower motor neuron degeneration. Here, we set out to investigate cross-sectional and longitudinal disease effects in the upper cervical spinal cord in patients with ALS, progressive muscular atrophy (PMA: primarily lower motor neuron involvement) and primary lateral sclerosis (PLS: primarily upper motor neuron involvement), and their relation to disease severity and grey and white matter brain measurements. METHODS: We enrolled 108 ALS patients without C9orf72 repeat expansion (ALS C9-), 26 ALS patients with C9orf72 repeat expansion (ALS C9+), 28 PLS patients, 56 PMA patients and 114 controls. During up to five visits, longitudinal T1-weighted brain MRI data were acquired and used to segment the upper cervical spinal cord (UCSC, up to C3) and individual cervical segments (C1 to C4) to calculate cross-sectional areas (CSA). Using linear (mixed-effects) models, the CSA differences were assessed between groups and correlated with disease severity. Furthermore, a relationship between CSA and brain measurements was examined in terms of cortical thickness of the precentral gyrus and white matter integrity of the corticospinal tract. RESULTS: Compared to controls, CSAs at baseline showed significantly thinner UCSC in all groups in the MND spectrum. Over time, ALS C9- patients demonstrated significant thinning of the UCSC and, more specifically, of segment C3 compared to controls. Progressive thinning over time was also observed in C1 of PMA patients, while ALS C9+ and PLS patients did not show any longitudinal changes. Longitudinal spinal cord measurements showed a significant relationship with disease severity and we found a significant correlation between spinal cord and motor cortex thickness or corticospinal tract integrity for PLS and PMA, but not for ALS patients. DISCUSSION: Our findings demonstrate atrophy of the upper cervical spinal cord in the motor neuron disease spectrum, which was progressive over time for all but PLS patients. Cervical spinal cord imaging in ALS seems to capture different disease effects than brain neuroimaging. Atrophy of the cervical spinal cord is therefore a promising additional biomarker for both diagnosis and disease progression and could help in the monitoring of treatment effects in future clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Médula Cervical/patología , Progresión de la Enfermedad , Enfermedad de la Neurona Motora/patología , Atrofia Muscular Espinal/patología , Adulto , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Médula Cervical/diagnóstico por imagen , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedad de la Neurona Motora/diagnóstico por imagen , Atrofia Muscular Espinal/diagnóstico por imagen , Neuroimagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA