Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Appl Clin Med Phys ; 16(2): 4848, 2015 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26103166

RESUMEN

The purpose of this study was to investigate performance of the couch and coil mounts designed for MR-simulation prostate scanning using data from ten volunteers. Volunteers were scanned using the standard MR scanning protocol with the MR coil directly strapped on the external body and the volunteer lying on the original scanner table. They also were scanned using a MR-simulation table top and pelvic coil mounts. MR images from both setups were compared in terms of body contour variation and image quality effects within particular organs of interest. Six-field conformal plans were generated on the two images with assigned bulk density for dose calculation. With the MR-simulation devices, the anterior skin deformation was reduced by up to 1.7 cm. The hard tabletop minimizes the posterior body deformation which can be up to 2.3 cm on the standard table, depending on the weight of volunteer. The image signal-to-noise ratio reduced by 14% and 25% on large field of view (FOV) and small FOV images, respectively, after using the coil mount; the prostate volume contoured on two images showed difference of 1.05 ± 0.66 cm3. The external body deformation caused a mean dose reduction of 0.6 ± 0.3 Gy, while the coverage reduced by 22% ± 13% and 27% ± 6% in V98 and V100, respectively. A dedicated MR simulation setup for prostate radiotherapy is essential to ensure the agreement between planning anatomy and treatment anatomy. The image signal was reduced after applying the coil mount, but no significant effect was found on prostate contouring.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Aumento de la Imagen , Imagen por Resonancia Magnética/instrumentación , Masculino , Persona de Mediana Edad , Posicionamiento del Paciente/instrumentación , Pelvis/diagnóstico por imagen , Radiografía
2.
Med Phys ; 36(3): 984-92, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19378759

RESUMEN

A simplified method of verifying intensity modulated radiation therapy (IMRT) fields using a Varian aS500 amorphous silicon electronic portal imaging device (EPID) is demonstrated. Unlike previous approaches, it does not involve time consuming or complicated analytical processing of the data. The central axis pixel response of the EPID, as well as the profile characteristics obtained from images acquired with a 6 MV photon beam, was examined as a function of field size. Ion chamber measurements at various depths in a water phantom were then collected and it was found that at a specific depth d(ref), the dose response and profile characteristics closely matched the results of the EPID analysis. The only manipulation required to be performed on the EPID images was the multiplication of a matrix of off axis ratio values to remove the effect of the flood field calibration. Similarly, d(ref) was found for 18 MV. Planar dose maps at d(ref) in a water phantom for a bar pattern, a strip pattern, and 14 clinical IMRT fields from two patient cases each being from a separate anatomical region, i.e., head and neck as well as the pelvis, for both energies were generated by the Pinnacle planning system (V7.4). EPID images of these fields were acquired and converted to planar dose maps and compared directly with the Pinnacle planar dose maps. Radiographic film dosimetry and a MapCHECK dosimetry device (Sun Nuclear Corporation, Melbourne, FL) were used as an independent verification of the dose distribution. Gamma analysis of the EPID, film, and Pinnacle planar dose maps generated for the clinical IMRT fields showed that approximately 97% of all points passed using a 3% dose/3 mm DTA tolerance test. Based on the range of fields studied, the author's results appear to justify using this approach as a method to verify dose distributions calculated on a treatment planning system, including complex intensity modulated fields.


Asunto(s)
Radiometría/instrumentación , Planificación de la Radioterapia Asistida por Computador/estadística & datos numéricos , Radioterapia de Intensidad Modulada/estadística & datos numéricos , Fenómenos Biofísicos , Humanos , Aceleradores de Partículas/estadística & datos numéricos , Radiometría/estadística & datos numéricos , Radioterapia de Alta Energía/estadística & datos numéricos , Dispersión de Radiación , Silicio
3.
Australas Phys Eng Sci Med ; 38(1): 39-46, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25412885

RESUMEN

Routine quality assurance (QA) is necessary and essential to ensure MR scanner performance. This includes geometric distortion, slice positioning and thickness accuracy, high contrast spatial resolution, intensity uniformity, ghosting artefact and low contrast object detectability. However, this manual process can be very time consuming. This paper describes the development and validation of an open source tool to automate the MR QA process, which aims to increase physicist efficiency, and improve the consistency of QA results by reducing human error. The OSAQA software was developed in Matlab and the source code is available for download from http://jidisun.wix.com/osaqa-project/. During program execution QA results are logged for immediate review and are also exported to a spreadsheet for long-term machine performance reporting. For the automatic contrast QA test, a user specific contrast evaluation was designed to improve accuracy for individuals on different display monitors. American College of Radiology QA images were acquired over a period of 2 months to compare manual QA and the results from the proposed OSAQA software. OSAQA was found to significantly reduce the QA time from approximately 45 to 2 min. Both the manual and OSAQA results were found to agree with regard to the recommended criteria and the differences were insignificant compared to the criteria. The intensity homogeneity filter is necessary to obtain an image with acceptable quality and at the same time keeps the high contrast spatial resolution within the recommended criterion. The OSAQA tool has been validated on scanners with different field strengths and manufacturers. A number of suggestions have been made to improve both the phantom design and QA protocol in the future.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/normas , Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud/métodos , Diseño de Equipo , Humanos , Internet
4.
Phys Med Biol ; 60(8): 3097-109, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25803177

RESUMEN

To clinically implement MRI simulation or MRI-alone treatment planning requires comprehensive end-to-end testing to ensure an accurate process. The purpose of this study was to design and build a geometric phantom simulating a human male pelvis that is suitable for both CT and MRI scanning and use it to test geometric and dosimetric aspects of MRI simulation including treatment planning and digitally reconstructed radiograph (DRR) generation.A liquid filled pelvic shaped phantom with simulated pelvic organs was scanned in a 3T MRI simulator with dedicated radiotherapy couch-top, laser bridge and pelvic coil mounts. A second phantom with the same external shape but with an internal distortion grid was used to quantify the distortion of the MR image. Both phantoms were also CT scanned as the gold-standard for both geometry and dosimetry. Deformable image registration was used to quantify the MR distortion. Dose comparison was made using a seven-field IMRT plan developed on the CT scan with the fluences copied to the MR image and recalculated using bulk electron densities. Without correction the maximum distortion of the MR compared with the CT scan was 7.5 mm across the pelvis, while this was reduced to 2.6 and 1.7 mm by the vendor's 2D and 3D correction algorithms, respectively. Within the locations of the internal organs of interest, the distortion was <1.5 and <1 mm with 2D and 3D correction algorithms, respectively. The dose at the prostate isocentre calculated on CT and MRI images differed by 0.01% (1.1 cGy). Positioning shifts were within 1 mm when setup was performed using MRI generated DRRs compared to setup using CT DRRs.The MRI pelvic phantom allows end-to-end testing of the MRI simulation workflow with comparison to the gold-standard CT based process. MRI simulation was found to be geometrically accurate with organ dimensions, dose distributions and DRR based setup within acceptable limits compared to CT.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , Humanos , Masculino , Pelvis/diagnóstico por imagen , Fantasmas de Imagen , Radiometría , Tomografía Computarizada por Rayos X/métodos
5.
Med Biol Eng Comput ; 52(7): 579-88, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24878699

RESUMEN

Using an amorphous silicon (a-Si) EPID for transit dosimetry requires detailed characterization of its dosimetric response in a variety of conditions. In this study, a measurement-based model was developed to calibrate an a-Si EPID response to dose for transit dosimetry by comparison with a reference ionization chamber. The ionization chamber reference depth and the required additional buildup thickness for electronic portal imaging devices (EPID) transit dosimetry were determined. The combined effects of changes in radiation field size, phantom thickness, and the off-axis distance on EPID transit dosimetry were characterized. The effect of scattered radiation on out-of-field response was investigated for different field sizes and phantom thicknesses by evaluation of the differences in image profiles and in-water measured profiles. An algorithm was developed to automatically apply these corrections to EPID images based on the user-specified field size and phantom thickness. The average phantom thickness and an effective field size were used for IMRT fields, and images were acquired in cine mode in the presence of an anthropomorphic phantom. The effective field size was defined as the percentage of the jaw-defined field that was involved during the delivery. Nine head and neck dynamic IMRT fields were tested by comparison with a MatriXX two-dimensional array dosimeter using the Gamma (3%, 3 mm) evaluation. A depth of 1.5 cm was selected as the ionization chamber reference depth. An additional 2.2 mm of copper buildup was added to the EPID. Comparison of EPID and MatriXX dose images for the tested fields showed that using a 10% threshold, the average number of points with Gamma index <1 was 96.5%. The agreement in the out-of field area was shown by selection of a 2% threshold which on average resulted in 94.8% of points with a Gamma index <1. The suggested method is less complicated than previously reported techniques and can be used for all a-Si EPIDs regardless of the manufacturer.


Asunto(s)
Radiometría/métodos , Radioterapia de Intensidad Modulada/métodos , Silicio/química , Algoritmos , Electrónica Médica , Fantasmas de Imagen , Radiometría/instrumentación
6.
Radiother Oncol ; 98(3): 330-4, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21339009

RESUMEN

BACKGROUND AND PURPOSE: Dose planning requires a CT scan which provides the electron density distribution for dose calculation. MR provides superior soft tissue contrast compared to CT and the use of MR-alone for prostate planning would provide further benefits such as lower cost to the patient. This study compares the accuracy of MR-alone based dose calculations with bulk electron density assignment to CT-based dose calculations for prostate radiotherapy. MATERIALS AND METHODS: CT and whole pelvis MR images were contoured for 39 prostate patients. Plans with uniform density and plans with bulk density values assigned to bone and tissue were compared to the patient's gold standard full density CT plan. The optimal bulk density for bone was calculated using effective depth measurements. The plans were evaluated using ICRU point doses, dose volume histograms, and Chi comparisons. Differences in spatial uniformity were investigated for the CT and MR scans. RESULTS: The calculated dose for CT bulk bone and tissue density plans was 0.1±0.6% (mean±1 SD) higher than the corresponding full density CT plan. MR bulk bone and tissue density plans were 1.3±0.8% lower than the full density CT plan. CT uniform density plans and MR uniform density plans were 1.4±0.9% and 2.6±0.9% lower, respectively. Paired t-tests performed on specific points on the DVH graphs showed that points on DVHs for all bulk electron density plans were equivalent with two exceptions. There was no significant difference between doses calculated on Pinnacle and Eclipse. The dose distributions of six patients produced Chi values outside the acceptable range of values when MR-based plans were compared to the full density plan. CONCLUSIONS: MR-alone bulk density planning is feasible provided bone is assigned a density, however, manual segmentation of bone on MR images will have to be replaced with automatic methods. The major dose differences for MR bulk density plans are due to differences in patient external contours introduced by the MR couch-top and pelvic coil.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias de la Próstata/radioterapia , Radiometría , Planificación de la Radioterapia Asistida por Computador , Anciano , Protocolos Clínicos , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Próstata/diagnóstico por imagen , Planificación de la Radioterapia Asistida por Computador/normas , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA