Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
J Hepatol ; 80(6): 858-867, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38336347

RESUMEN

BACKGROUND & AIMS: HBV expresses more than 10 spliced RNAs from the viral pregenomic RNA, but their functions remain elusive and controversial. To address the function of HBV spliced RNAs, we generated splicing-deficient HBV mutants and conducted experiments to assess the impact of these mutants on HBV infection. METHODS: HepG2-NTCP cells, human hepatocyte chimeric FRG mice (hu-FRG mice), and serum from patients with chronic hepatitis B were used for experiments on HBV infection. Additionally, SHifter assays and cryo-electron microscopy were performed. RESULTS: We found the infectivity of splicing-deficient HBV was decreased 100-1,000-fold compared with that of wild-type HBV in hu-FRG mice. Another mutant, A487C, which loses the most abundant spliced RNA (SP1), also exhibits severely impaired infectivity. SP1 hypothetically encodes a novel protein HBcSP1 (HBc-Cys) that lacks the C-terminal cysteine from full-length HBc. In the SHifter assay, HBcSP1 was detected in wild-type viral particles at a ratio of about 20-100% vs. conventional HBc, as well as in the serum of patients with chronic hepatitis B, but not in A487C particles. When infection was conducted with a shorter incubation time of 4-8 h at lower PEG concentrations in HepG2-NTCP cells, the entry of the A487C mutant was significantly slower. SP1 cDNA complementation of the A487C mutant succeeded in rescuing its infectivity in hu-FRG mice and HepG2-NTCP cells. Moreover, cryo-electron microscopy revealed a disulfide bond between HBc cysteine 183 and 48 in the HBc intradimer of the A487C capsid, leading to a locked conformation that disfavored viral entry in contrast to the wild-type capsid. CONCLUSIONS: Prior studies unveiled the potential integration of the HBc-Cys protein into the HBV capsid. We confirmed the proposal and validated its identity and function during infection. IMPACT AND IMPLICATIONS: HBV SP1 RNA encodes a novel HBc protein (HBcSP1) that lacks the C-terminal cysteine from conventional HBc (HBc-Cys). HBcSP1 was detected in cell culture-derived HBV and confirmed in patients with chronic infection by both immunological and chemical modification assays at 10-50% of capsid. The splicing-deficient mutant HBV (A487C) impaired infectivity in human hepatocyte chimeric mice and viral entry in the HepG2-NTCP cell line. Furthermore, these deficiencies of the splicing-deficient mutant could be rescued by complementation with the SP1-encoded protein HBcSP1. We confirmed and validated the identity and function of HBcSP1 during infection, building on the current model of HBV particles.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B Crónica , Humanos , Animales , Virus de la Hepatitis B/genética , Ratones , Células Hep G2 , Hepatitis B Crónica/virología , Empalme del ARN , Mutación , ARN Viral/genética , ARN Viral/metabolismo , Microscopía por Crioelectrón
2.
Mol Ther ; 31(11): 3322-3336, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37689971

RESUMEN

The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in the emergence of new variants that are resistant to existing vaccines and therapeutic antibodies, has raised the need for novel strategies to combat the persistent global COVID-19 epidemic. In this study, a monoclonal anti-human angiotensin-converting enzyme 2 (hACE2) antibody, ch2H2, was isolated and humanized to block the viral receptor-binding domain (RBD) binding to hACE2, the major entry receptor of SARS-CoV-2. This antibody targets the RBD-binding site on the N terminus of hACE2 and has a high binding affinity to outcompete the RBD. In vitro, ch2H2 antibody showed potent inhibitory activity against multiple SARS-CoV-2 variants, including the most antigenically drifted and immune-evading variant Omicron. In vivo, adeno-associated virus (AAV)-mediated delivery enabled a sustained expression of monoclonal antibody (mAb) ch2H2, generating a high concentration of antibodies in mice. A single administration of AAV-delivered mAb ch2H2 significantly reduced viral RNA load and infectious virions and mitigated pulmonary pathological changes in mice challenged with SARS-CoV-2 Omicron BA.5 subvariant. Collectively, the results suggest that AAV-delivered hACE2-blocking antibody provides a promising approach for developing broad-spectrum antivirals against SARS-CoV-2 and potentially other hACE2-dependent pathogens that may emerge in the future.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos ampliamente neutralizantes , COVID-19 , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/genética , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales , COVID-19/terapia , Dependovirus/genética , ARN Viral , SARS-CoV-2/genética , Anticuerpos ampliamente neutralizantes/farmacología , Anticuerpos ampliamente neutralizantes/uso terapéutico
3.
PLoS Pathog ; 17(10): e1009704, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34673836

RESUMEN

Development of effective therapeutics for mitigating the COVID-19 pandemic is a pressing global need. Neutralizing antibodies are known to be effective antivirals, as they can be rapidly deployed to prevent disease progression and can accelerate patient recovery without the need for fully developed host immunity. Here, we report the generation and characterization of a series of chimeric antibodies against the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Some of these antibodies exhibit exceptionally potent neutralization activities in vitro and in vivo, and the most potent of our antibodies target three distinct non-overlapping epitopes within the RBD. Cryo-electron microscopy analyses of two highly potent antibodies in complex with the SARS-CoV-2 spike protein suggested they may be particularly useful when combined in a cocktail therapy. The efficacy of this antibody cocktail was confirmed in SARS-CoV-2-infected mouse and hamster models as prophylactic and post-infection treatments. With the emergence of more contagious variants of SARS-CoV-2, cocktail antibody therapies hold great promise to control disease and prevent drug resistance.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/farmacología , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Cricetinae , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones
4.
PLoS Pathog ; 17(8): e1009758, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34379705

RESUMEN

Since the pandemic of COVID-19 has intensely struck human society, small animal model for this infectious disease is in urgent need for basic and pharmaceutical research. Although several COVID-19 animal models have been identified, many of them show either minimal or inadequate pathophysiology after SARS-CoV-2 challenge. Here, we describe a new and versatile strategy to rapidly establish a mouse model for emerging infectious diseases in one month by multi-route, multi-serotype transduction with recombinant adeno-associated virus (AAV) vectors expressing viral receptor. In this study, the proposed approach enables profound and enduring systemic expression of SARS-CoV-2-receptor hACE2 in wild-type mice and renders them vulnerable to SARS-CoV-2 infection. Upon virus challenge, generated AAV/hACE2 mice showed pathophysiology closely mimicking the patients with severe COVID-19. The efficacy of a novel therapeutic antibody cocktail RBD-chAbs for COVID-19 was tested and confirmed by using this AAV/hACE2 mouse model, further demonstrating its successful application in drug development.


Asunto(s)
COVID-19 , Enfermedades Transmisibles Emergentes , Modelos Animales de Enfermedad , Células 3T3 , Enzima Convertidora de Angiotensina 2/genética , Animales , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , COVID-19/inmunología , COVID-19/patología , COVID-19/fisiopatología , Chlorocebus aethiops , Dependovirus/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Transducción Genética , Células Vero
5.
Hepatology ; 76(1): 207-219, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34957587

RESUMEN

BACKGROUND AND AIMS: Hepatitis B immunoglobulin (HBIG) has been routinely applied in the liver transplantation setting to block HBV reinfection of grafts. However, new monoclonal anti-HBV surface antibodies have been developed to replace HBIG. The epitopes of such monoclonal antibodies may affect the emergence of escape variants and deserve study. APPROACH AND RESULTS: The conformational epitope of sLenvervimab, a surrogate form of Lenvervimab, which is a monoclonal anti-HBsAg antibody currently under phase 3 trial, was investigated by selecting escape mutants from a human liver chimeric mouse. HBV-infected chimeric mice treated with sLenvervimab monotherapy showed an initial decline in circulating HBsAg levels, followed by a quick rebound in 1 month. Sequencing of circulating or liver HBV DNA revealed emerging variants, with replacement of amino acid E164 or T140, two residues widely separated in HBsAg. E164 HBV variants strongly resisted sLenvervimab neutralization in cell culture infection, and the T140 variant moderately resisted sLenvervimab neutralization. Natural HBV variants with amino-acid replacements adjacent to E164 were constructed and examined for sLenvervimab neutralization effects. Variants with K160 replacement also resisted neutralization. These data revealed the conformational epitope of sLenvervimab. CONCLUSIONS: Selection of antibody-escape HBV variants in human chimeric mice works efficiently. Analysis of such emerging variants helps to identify anchor amino-acid residues of the conformational epitope that are difficult to discover by conventional approaches.


Asunto(s)
Antígenos de Superficie de la Hepatitis B , Hepatitis B , Animales , Anticuerpos Monoclonales , Epítopos , Hepatitis B/tratamiento farmacológico , Anticuerpos contra la Hepatitis B , Virus de la Hepatitis B/genética , Ratones
6.
J Med Virol ; 95(2): e28478, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36609964

RESUMEN

Patients with severe COVID-19 often suffer from lymphopenia, which is linked to T-cell sequestration, cytokine storm, and mortality. However, it remains largely unknown how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces lymphopenia. Here, we studied the transcriptomic profile and epigenomic alterations involved in cytokine production by SARS-CoV-2-infected cells. We adopted a reverse time-order gene coexpression network approach to analyze time-series RNA-sequencing data, revealing epigenetic modifications at the late stage of viral egress. Furthermore, we identified SARS-CoV-2-activated nuclear factor-κB (NF-κB) and interferon regulatory factor 1 (IRF1) pathways contributing to viral infection and COVID-19 severity through epigenetic analysis of H3K4me3 chromatin immunoprecipitation sequencing. Cross-referencing our transcriptomic and epigenomic data sets revealed that coupling NF-κB and IRF1 pathways mediate programmed death ligand-1 (PD-L1) immunosuppressive programs. Interestingly, we observed higher PD-L1 expression in Omicron-infected cells than SARS-CoV-2 infected cells. Blocking PD-L1 at an early stage of virally-infected AAV-hACE2 mice significantly recovered lymphocyte counts and lowered inflammatory cytokine levels. Our findings indicate that targeting the SARS-CoV-2-mediated NF-κB and IRF1-PD-L1 axis may represent an alternative strategy to reduce COVID-19 severity.


Asunto(s)
COVID-19 , Linfopenia , Animales , Ratones , SARS-CoV-2/metabolismo , Antígeno B7-H1 , Evasión Inmune , FN-kappa B/metabolismo , Regulación hacia Arriba , Citocinas/metabolismo
7.
Hepatology ; 74(2): 641-655, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33675094

RESUMEN

BACKGROUND AND AIMS: PreS mutants of HBV have been reported to be associated with HCC. We conducted a longitudinal study of the role of HBV preS mutations in the development of HCC, particularly in patients with chronic hepatitis B (CHB) having low HBV DNA or alanine aminotransferase (ALT) levels, and investigated the effects of secretion-defective preS2 deletion mutant (preS2ΔMT) on hepatocyte damage in vitro and liver fibrosis in vivo. APPROACH AND RESULTS: Association of preS mutations with HCC in 343 patients with CHB was evaluated by a retrospective case-control follow-up study. Effects of preS2ΔMT on HBsAg retention, endoplasmic reticulum (ER) stress, calcium accumulation, mitochondrial dysfunction, and liver fibrosis were examined. Multivariate analysis revealed a significant association of preS mutations with HCC (HR, 3.210; 95% CI, 1.072-9.613; P = 0.037) including cases with low HBV DNA or ALT levels (HR, 2.790; 95% CI, 1.133-6.873; P = 0.026). Antiviral therapy reduced HCC risk, including cases with preS mutations. PreS2ΔMT expression promoted HBsAg retention in the ER and unfolded protein response (UPR). Transmission electron microscopic examination, MitoTracker staining, real-time ATP assay, and calcium staining of preS2ΔMT-expressing cells revealed aberrant ER and mitochondrial ultrastructure, reduction of mitochondrial membrane potential and ATP production, and calcium overload. Serum HBV secretion levels were ~100-fold lower in preS2ΔMT-infected humanized Fah-/-/ Rag2-/-/Il2rg-/- triple knockout mice than in wild-type HBV-infected mice. PreS2ΔMT-infected mice displayed up-regulation of UPR and caspase-3 and enhanced liver fibrosis. CONCLUSIONS: PreS mutations were significantly associated with HCC development in patients with CHB, including those with low HBV DNA or ALT levels. Antiviral therapy reduced HCC occurrence in patients with CHB, including those with preS mutations. Intracellular accumulation of mutated HBsAg induced or promoted ER stress, calcium overload, mitochondrial dysfunction, impaired energy metabolism, liver fibrosis, and HCC.


Asunto(s)
Carcinoma Hepatocelular/epidemiología , Antígenos de Superficie de la Hepatitis B/genética , Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/inmunología , Cirrosis Hepática/epidemiología , Neoplasias Hepáticas/epidemiología , Precursores de Proteínas/genética , Adulto , Animales , Antivirales/uso terapéutico , Carcinogénesis/inmunología , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Femenino , Estudios de Seguimiento , Antígenos de Superficie de la Hepatitis B/inmunología , Virus de la Hepatitis B/genética , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/patología , Hepatitis B Crónica/virología , Hepatocitos/trasplante , Interacciones Huésped-Patógeno/genética , Humanos , Cirrosis Hepática/inmunología , Cirrosis Hepática/patología , Cirrosis Hepática/virología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Estudios Longitudinales , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Mitocondrias Hepáticas/patología , Mutación , Precursores de Proteínas/inmunología , Estudios Retrospectivos , Quimera por Trasplante
8.
J Biomed Sci ; 29(1): 68, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36096815

RESUMEN

The novel coronavirus disease (COVID-19) pandemic remains a global public health crisis, presenting a broad range of challenges. To help address some of the main problems, the scientific community has designed vaccines, diagnostic tools and therapeutics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The rapid pace of technology development, especially with regard to vaccines, represents a stunning and historic scientific achievement. Nevertheless, many challenges remain to be overcome, such as improving vaccine and drug treatment efficacies for emergent mutant strains of SARS-CoV-2. Outbreaks of more infectious variants continue to diminish the utility of available vaccines and drugs. Thus, the effectiveness of vaccines and drugs against the most current variants is a primary consideration in the continual analyses of clinical data that supports updated regulatory decisions. The first two vaccines granted Emergency Use Authorizations (EUAs), BNT162b2 and mRNA-1273, still show more than 60% protection efficacy against the most widespread current SARS-CoV-2 variant, Omicron. This variant carries more than 30 mutations in the spike protein, which has largely abrogated the neutralizing effects of therapeutic antibodies. Fortunately, some neutralizing antibodies and antiviral COVID-19 drugs treatments have shown continued clinical benefits. In this review, we provide a framework for understanding the ongoing development efforts for different types of vaccines and therapeutics, including small molecule and antibody drugs. The ripple effects of newly emergent variants, including updates to vaccines and drug repurposing efforts, are summarized. In addition, we summarize the clinical trials supporting the development and distribution of vaccines, small molecule drugs, and therapeutic antibodies with broad-spectrum activity against SARS-CoV-2 strains.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Vacunas Virales , Antivirales/farmacología , Antivirales/uso terapéutico , Vacuna BNT162 , COVID-19/prevención & control , Humanos , SARS-CoV-2 , Vacunas Virales/uso terapéutico
9.
J Biomed Sci ; 29(1): 49, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799178

RESUMEN

BACKGROUND: With the continuous emergence of new SARS-CoV-2 variants that feature increased transmission and immune escape, there is an urgent demand for a better vaccine design that will provide broader neutralizing efficacy. METHODS: We report an mRNA-based vaccine using an engineered "hybrid" receptor binding domain (RBD) that contains all 16 point-mutations shown in the currently prevailing Omicron and Delta variants. RESULTS: A booster dose of hybrid vaccine in mice previously immunized with wild-type RBD vaccine induced high titers of broadly neutralizing antibodies against all tested SARS-CoV-2 variants of concern (VOCs). In naïve mice, hybrid vaccine generated strong Omicron-specific neutralizing antibodies as well as low but significant titers against other VOCs. Hybrid vaccine also elicited CD8+/IFN-γ+ T cell responses against a conserved T cell epitope present in wild type and all VOCs. CONCLUSIONS: These results demonstrate that inclusion of different antigenic mutations from various SARS-CoV-2 variants is a feasible approach to develop cross-protective vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , COVID-19/prevención & control , Humanos , Ratones , SARS-CoV-2/genética , Vacunas Sintéticas , Vacunas de ARNm
10.
J Biomed Sci ; 28(1): 80, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34814920

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus with a high mutation rate. Importantly, several currently circulating SARS-CoV-2 variants are associated with loss of efficacy for both vaccines and neutralizing antibodies. METHODS: We analyzed the binding activity of six highly potent antibodies to the spike proteins of SARS-CoV-2 variants, assessed their neutralizing abilities with pseudovirus and authentic SARS-CoV-2 variants and evaluate efficacy of antibody cocktail in Delta SARS-CoV-2-infected hamster models as prophylactic and post-infection treatments. RESULTS: The tested RBD-chAbs, except RBD-chAb-25, maintained binding ability to spike proteins from SARS-CoV-2 variants. However, only RBD-chAb-45 and -51 retained neutralizing activities; RBD-chAb-1, -15, -25 and -28 exhibited diminished neutralization for all SARS-CoV-2 variants. Notably, several cocktails of our antibodies showed low IC50 values (3.35-27.06 ng/ml) against the SARS-CoV-2 variant pseudoviruses including United Kingdom variant B.1.1.7 (Alpha), South Africa variant B.1.351 (Beta), Brazil variant P1 (Gamma), California variant B.1.429 (Epsilon), New York variant B.1.526 (Iota), and India variants, B.1.617.1 (Kappa) and B.1.617.2 (Delta). RBD-chAb-45, and -51 showed PRNT50 values 4.93-37.54 ng/ml when used as single treatments or in combination with RBD-chAb-15 or -28, according to plaque assays with authentic Alpha, Gamma and Delta SARS-CoV-2 variants. Furthermore, the antibody cocktail of RBD-chAb-15 and -45 exhibited potent prophylactic and therapeutic effects in Delta SARS-CoV-2 variant-infected hamsters. CONCLUSIONS: The cocktail of RBD-chAbs exhibited potent neutralizing activities against SARS-CoV-2 variants. These antibody cocktails are highly promising candidate tools for controlling new SARS-CoV-2 variants, including Delta.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , COVID-19/genética , Humanos , Conejos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Tratamiento Farmacológico de COVID-19
11.
J Cell Mol Med ; 24(13): 7609-7624, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32441055

RESUMEN

Long-term abuse of ketamine causes ketamine-induced cystitis. The functional alterations of bladder epithelial cells in microenvironment during cystitis remain poorly understood. Here, we explored extracellular vesicles (EV) alteration in ketamine-induced toxicity. To simulate the high-concentration ketamine environment in vivo, we established an in vitro model of high ketamine using human uroepithelial cells (SV-HUC-1). Cell viability and proliferation were assessed to evaluate the effects of various concentrations (0, 0.25, 0.5, 1, 2, 4 and 8 mmol/L) of ketamine on SV-HUC-1 cells. The cell supernatant cultured at a concentration (0, 1, 2, 4 mmol/L) of ketamine was selected for EV extraction and identified. Subsequently, we assessed different groups (ketamine, ketamine plus EV blocker, EV, EV plus extracellular vesicles blocker) of oxidative stress and expression of inflammation. Last, luciferase reporter assay was performed to study the transcriptional regulation of EV on the NF-kB and P38 pathway. The results of our study suggested that treatment with 0, 1, 2 or 4 mmol/L ketamine altered the morphology and secretion capacity of extracellular vesicles. As the concentration of ketamine increased, the average particle size of EV decreased, but the crest size, particle concentration and EV protein increased. Moreover, after the addition of EV blocker, EV secreted at different concentrations were blocked outside the cell membrane, and the degree of oxidative stress decreased. Our study provided evidence that ketamine alters the secretion of EV by directly stimulating cells in inflammation microenvironment and EV play significant roles in intercellular signal communication and the formation of KIC.EV.


Asunto(s)
Cistitis/inducido químicamente , Cistitis/complicaciones , Vesículas Extracelulares/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Transducción de Señal , Úlcera/complicaciones , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cistitis/patología , Citocalasina D/farmacología , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/ultraestructura , Humanos , Ketamina , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Úlcera/patología
12.
J Biomed Sci ; 27(1): 65, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32434501

RESUMEN

BACKGROUND: Hepatitis D virus (HDV) infection may induce fulminant hepatitis in chronic hepatitis B patients (CHB) or rapid progression of CHB to cirrhosis or hepatocellular carcinoma. There is no effective treatment for HDV infection. HDV encodes small delta antigens (S-HDAg) and large delta antigens (L-HDAg). S-HDAg is essential for HDV replication. Prenylated L-HDAg plays a key role in HDV assembly. Previous studies indicate that L-HDAg transactivates transforming growth factor beta (TGF-ß) and induces epithelial-mesenchymal transition (EMT), possibly leading to liver fibrosis. However, the mechanism is unclear. METHODS: The mechanisms of the activation of Twist promoter by L-HDAg were investigated by luciferase reporter assay, chromatin immunoprecipitation, and co-immunoprecipitation analysis. ELISA and Western blotting were used to analyze L-HDAg prenylation, TGF-ß secretion, expression of EMT markers, and to evaluate efficacy of statins for HDV treatment. RESULTS: We found that L-HDAg activated Twist expression, TGF-ß expression and consequently induced EMT, based on its interaction with Smad3 on Twist promoter. The treatment of statin, a prenylation inhibitor, resulted in reduction of Twist promoter activity, TGF-ß expression, and EMT, and reduces the release of HDV virions into the culture medium. CONCLUSIONS: We demonstrate that L-HDAg activates EMT via Twist and TGF-ß activation. Treatment with statins suppressed Twist expression, and TGF-ß secretion, leading to downregulation of EMT. Our findings clarify the mechanism of HDV-induced EMT, and provide a basis for possible novel therapeutic strategies against HDV infection.


Asunto(s)
Transición Epitelial-Mesenquimal , Hepatitis D/fisiopatología , Virus de la Hepatitis Delta/fisiología , Antígenos de Hepatitis delta/metabolismo , Proteínas Nucleares/genética , Proteína smad3/genética , Proteína 1 Relacionada con Twist/genética , Línea Celular , Transición Epitelial-Mesenquimal/genética , Humanos , Proteínas Nucleares/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteína 1 Relacionada con Twist/metabolismo
13.
Bioinformatics ; 34(20): 3529-3538, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29718246

RESUMEN

Motivation: Heatmap is a popular visualization technique in biology and related fields. In this study, we extend heatmaps within the framework of matrix visualization (MV) by incorporating a covariate adjustment process through the estimation of conditional correlations. MV can explore the embedded information structure of high-dimensional large-scale datasets effectively without dimension reduction. The benefit of the proposed covariate-adjusted heatmap is in the exploration of conditional association structures among the subjects or variables that cannot be done with conventional MV. Results: For adjustment of a discrete covariate, the conditional correlation is estimated by the within and between analysis. This procedure decomposes a correlation matrix into the within- and between-component matrices. The contribution of the covariate effects can then be assessed through the relative structure of the between-component to the original correlation matrix while the within-component acts as a residual. When a covariate is of continuous nature, the conditional correlation is equivalent to the partial correlation under the assumption of a joint normal distribution. A test is then employed to identify the variable pairs which possess the most significant differences at varying levels of correlation before and after a covariate adjustment. In addition, a z-score significance map is constructed to visualize these results. A simulation and three biological datasets are employed to illustrate the power and versatility of our proposed method. Availability and implementation: GAP is available to readers and is free to non-commercial applications. The installation instructions, the user's manual, and the detailed tutorials can be found at http://gap.stat.sinica.edu.tw/Software/GAP. Supplementary information: Supplementary Data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Programas Informáticos , Femenino , Humanos , Masculino
14.
Opt Express ; 27(10): 14221-14230, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31163874

RESUMEN

The control of the emission from electric and magnetic dipoles is highly desired for the development of optic chips. Although the emission of electric dipole has been successfully controlled by plasmonic nanoantenna, the control of magnetic dipole emission is relatively difficult. Here, we systematically study the effect of electric and magnetic modes of Au nanocups on the emission of electric and magnetic dipoles. The emission of electric dipole can be enhanced by both the electric and magnetic mode of the Au nanocup, while the emission of the magnetic dipole is only increased by the magnetic mode. The enhancement exhibits wavelength dependence. The wavelength of the largest enhancement is determined by the resonance wavelength of electric and magnetic modes. The enhancement values for electric and magnetic dipoles are determined by the near-field electric and magnetic field enhancements, respectively. More importantly, the emission pattern of magnetic dipole is greatly modified by the magnetic mode of Au nanocup. The directional emission of magnetic dipole is first time realized by use of the magnetic mode of the Au nanocup. Our findings deepen the understanding of the plasmon-controlled emission of electric and magnetic dipoles and will be very helpful to the development of the nanophotonic chips.

15.
J Pathol ; 245(4): 502-513, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29862509

RESUMEN

Hepatitis B virus (HBV) is an aetiological factor for liver cirrhosis and hepatocellular carcinoma (HCC). Despite current antiviral therapies that successfully reduce the viral load in patients with chronic hepatitis B, persistent hepatitis B surface antigen (HBsAg) remains a risk factor for HCC. To explore whether intrahepatic viral antigens contribute directly to hepatocarcinogenesis, we monitored the mitotic progression of HBV-positive cells. Cytokinesis failure was increased in HBV-positive HepG2.2.15 and 1.3ES2 cells, as well as in HuH-7 cells transfected with a wild-type or X-deficient HBV construct, but not in cells transfected with an HBsAg-deficient construct. We show that expression of viral large surface antigen (LHBS) was sufficient to induce cytokinesis failure of immortalized hepatocytes. Premitotic defects with DNA damage and G2 /M checkpoint attenuation preceded cytokinesis in LHBS-positive cells, and ultimately resulted in hyperploidy. Inhibition of polo-like kinase-1 (Plk1) not only restored the G2 /M checkpoint in these cells, but also suppressed LHBS-mediated in vivo tumourigenesis. Finally, a positive correlation between intrahepatic LHBS expression and hepatocyte hyperploidy was detected in >70% of patients with chronic hepatitis B. We conclude that HBV LHBS provokes hyperploidy by inducing DNA damage and upregulation of Plk1; the former results in atypical chromatin structures, and the latter attenuates the function of the G2 /M DNA damage checkpoint. Our data uncover a mechanism by which genomic integrity of hepatocytes is disrupted by viral LHBS. These findings highlight the role of intrahepatic surface antigen as an oncogenic risk factor in the development of HCC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Carcinoma Hepatocelular/virología , Citocinesis , Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B/metabolismo , Hepatitis B Crónica/virología , Hepatocitos/virología , Neoplasias Hepáticas/virología , Ploidias , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Viral , Daño del ADN , Modelos Animales de Enfermedad , Puntos de Control de la Fase G2 del Ciclo Celular , Células Hep G2 , Antígenos de Superficie de la Hepatitis B/genética , Virus de la Hepatitis B de la Marmota/genética , Virus de la Hepatitis B de la Marmota/metabolismo , Virus de la Hepatitis B/genética , Hepatitis B Crónica/genética , Hepatitis B Crónica/metabolismo , Hepatitis B Crónica/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Hepatocitos/trasplante , Interacciones Huésped-Patógeno , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Marmota , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Quinasa Tipo Polo 1
16.
J Biomed Sci ; 25(1): 59, 2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30055605

RESUMEN

BACKGROUND: Hepatitis B virus (HBV) infection is a common disease worldwide and is known to cause liver disease. C-type lectin 18 (CLEC18) is a novel secretory lectin highly expressed in human hepatocytes. Because the liver is the major target of HBV infection, we investigated whether the expression of CLEC18 can be used as a biomarker for HBV infection. METHODS: The expression level of CLEC18 in human liver chimeric mice with/without HBV infection was measured by quantitative real time polymerase chain reaction (qPCR) assay. Baseline plasma CLEC18 levels in 271 treatment-naive patients with chronic hepatitis B (CHB) undergoing nucleos(t)ide analogue (NUC) therapy and 35 healthy donors were measured by enzyme-linked immunosorbent assay, and the relationships to other clinical data were analyzed. RESULTS: The expression of CLEC18 was down-regulated in the human liver chimeric mice after HBV infection. Plasma CLEC18 levels were lower in the patients with CHB compared to the healthy donors and positively correlated with HBV DNA and HBsAg levels (P <  0.05). Multivariate Cox proportional hazard regression analysis identified a baseline plasma CLEC18 level of 320-2000 pg/mL to be an independent predictor of HBeAg loss (hazard ratio (HR): 2.077, P = 0.0318), seroconversion (HR: 2.041, P = 0.0445) and virological response (HR: 1.850, P = 0.0184) in 101 HBeAg-positive patients with CHB undergoing NUC therapy. CONCLUSIONS: Plasma CLEC18 levels were correlated with the stage of HBV infection and could predict HBeAg loss and seroconversion in the patients with CHB undergoing NUC therapy.


Asunto(s)
Biomarcadores/sangre , Hepatitis B Crónica/sangre , Lectinas Tipo C/sangre , Hígado/virología , Anciano , Animales , ADN Viral/sangre , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/genética , Antígenos e de la Hepatitis B/sangre , Virus de la Hepatitis B/aislamiento & purificación , Virus de la Hepatitis B/patogenicidad , Hepatitis B Crónica/patología , Hepatitis B Crónica/virología , Hepatocitos/virología , Humanos , Hígado/patología , Masculino , Ratones , Persona de Mediana Edad
17.
RNA ; 21(3): 385-400, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25595716

RESUMEN

In hepatitis B virus (HBV)-replicating hepatocytes, miR-130a expression was significantly reduced. In a reciprocal manner, miR-130a reduced HBV replication by targeting at two major metabolic regulators PGC1α and PPARγ, both of which can potently stimulate HBV replication. We proposed a positive feed-forward loop between HBV, miR-130a, PPARγ, and PGC1α. Accordingly, HBV can significantly enhance viral replication by reducing miR-130a and increasing PGC1α and PPARγ. NF-κB/p65 can strongly stimulate miR-130a promoter, while miR-130a can promote NF-κB/p65 protein level by reducing PPARγ and thus NF-κB/p65 protein degradation. We postulated another positive feed-forward loop between miR-130a and NF-κB/p65 via PPARγ. During liver inflammation, NF-κB signaling could contribute to viral clearance via its positive effect on miR-130a transcription. Conversely, in asymptomatic HBV carriers, persistent viral infection could reduce miR-130a and NF-κB expression, leading to dampened inflammation and immune tolerance. Finally, miR-130a could contribute to metabolic homeostasis by dual targeting PGC1α and PPARγ simultaneously.


Asunto(s)
Virus de la Hepatitis B/genética , Hepatitis B/genética , MicroARNs/genética , PPAR gamma/genética , Factores de Transcripción/genética , Replicación del ADN/genética , Regulación de la Expresión Génica , Hepatitis B/patología , Hepatitis B/virología , Virus de la Hepatitis B/patogenicidad , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , MicroARNs/metabolismo , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transducción de Señal , Factores de Transcripción/metabolismo , Replicación Viral/genética
18.
J Gastroenterol Hepatol ; 32(1): 261-269, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27218433

RESUMEN

BACKGROUND AND AIM: In view of its unique properties of detoxification and involvement of metabolic and biochemical functions, in vitro hepatocyte culture serves as a valuable material for drug screening and mechanistic analysis for pathology of liver diseases. The restriction of rapid de-differentiation and inaccessibility of human hepatocytes from routine clinical procedure, however, limits its use. METHODS: To address this issue, the effort to direct human mesenchymal stem cells (hMSCs) into hepatocytes using a modified protocol was proposed. With the additional treatment of histone deacetylase inhibitor (HDACi) and DNA methyltransferase inhibitor (DNMTi), in vitro hMSC-derived hepatocytes were cultivated and their hepatic characteristics were examined. RESULTS: By using a modified protocol, it was shown that Trichostatin A and 5-aza-2-deoxycitidine protected differentiating cells from death and could sufficiently trigger a wide range of liver-specific markers as well as liver functions including albumin production, glycogen storage, and urea cycle in hMSC-derived hepatocytes. The increased mRNA expression for hepatitis C virus (HCV) entry including CD81, Occludin, LDL receptor, and scavenger receptor class B type I in hMSC-derived hepatocytes was also detected, implying its potential to be utilized as an in vitro model to analyze dynamic HCV infection. CONCLUSIONS: The present study successfully established a protocol to direct hMSCs into hepatocyte-like cells suggesting the beneficial impact to apply HDACi and DNMTi as potent modulators for hMSCs to liver differentiation.


Asunto(s)
Diferenciación Celular , ADN (Citosina-5-)-Metiltransferasas , Inhibidores Enzimáticos , Epigénesis Genética , Hepatocitos , Inhibidores de Histona Desacetilasas , Células Madre Mesenquimatosas/citología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Humanos
19.
Gut ; 65(4): 658-71, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26423112

RESUMEN

OBJECTIVE: This study aimed to investigate the therapeutic potential of monoclonal antibody (mAb) against HBV as a novel treatment approach to chronic hepatitis B (CHB) in mouse models. METHODS: Therapeutic effects of mAbs against various epitopes on viral surface protein were evaluated in mice mimicking persistent HBV infection. The immunological mechanisms of mAb-mediated viral clearance were systematically investigated. RESULTS: Among 11 tested mAbs, a novel mAb E6F6 exhibited the most striking therapeutic effects in several HBV-persistent mice. Single-dose administration of E6F6 could profoundly suppress the levels of hepatitis B surface antigen (HBsAg) and HBV DNA for several weeks in HBV-transgenic mice. E6F6 regimen efficiently prevented initial HBV infection, and reduced viral dissemination from infected hepatocytes in human-liver-chimeric mice. E6F6-based immunotherapy facilitated the restoration of anti-HBV T-cell response in hydrodynamic injection (HDI)-based HBV carrier mice. Immunological analyses suggested that the Fcγ receptor-dependent phagocytosis plays a predominant role in E6F6-mediated viral suppression. Molecular analyses suggested that E6F6 recognises an evolutionarily conserved epitope (GPCK(R)TCT) and only forms a smaller antibody-viral particle immune complex with limited interparticle crosslinking when it binds to viral particles. This unique binding characteristic of E6F6 to HBV was possibly associated with its effective in vivo opsonophagocytosis for viral clearance. CONCLUSIONS: These results provided new insight into understanding the therapeutic role and mechanism of antibody against persistent viral infection. The E6F6-like mAbs may provide a novel immunotherapeutic agent against human chronic HBV infection.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígenos de Superficie de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B Crónica/tratamiento farmacológico , Inmunoterapia/métodos , Animales , ADN Viral/efectos de los fármacos , Modelos Animales de Enfermedad , Epítopos , Antígenos de Superficie de la Hepatitis B/inmunología , Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/inmunología , Hepatocitos/virología , Ratones , Ratones Transgénicos , Fagocitosis , Replicación Viral/efectos de los fármacos
20.
Mol Cell Biochem ; 414(1-2): 57-66, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26899709

RESUMEN

Cardiovascular disease is a growing major global public health problem. Oxidative stress is regarded as one of the key regulators of pathological physiology, which eventually leads to cardiovascular disease. However, mechanisms by which FGF-2 rescues cells from oxidative stress damage in cardiovascular disease is not fully elucidated. Herein this study was designed to investigate the protective effects of FGF-2 in H2O2-induced apoptosis of H9c2 cardiomyocytes, as well as the possible signaling pathway involved. Apoptosis of H9c2 cardiomyocytes was induced by H2O2 and assessed using methyl thiazolyl tetrazolium assay, Hoechst, and TUNEL staining. Cells were pretreated with PI3K/Akt inhibitor LY294002 to investigate the possible PI3K/Akt pathways involved in the protection of FGF-2. The levels of p-Akt, p-FoxO3a, and Bim were detected by immunoblotting. Stimulation with H2O2 decreased the phosphorylation of Akt and FoxO3a, and induced nuclear localization of FoxO3a and apoptosis of H9c2 cells. These effects of H2O2 were abrogated by pretreatment with FGF-2. Furthermore, the protective effects of FGF-2 were abolished by PI3K/Akt inhibitor LY294002. In conclusion, our data suggest that FGF-2 protects against H2O2-induced apoptosis of H9c2 cardiomyocytes via activation of the PI3K/Akt/FoxO3a pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/fisiología , Proteína Forkhead Box O3/metabolismo , Peróxido de Hidrógeno/toxicidad , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Proteína 11 Similar a Bcl2/metabolismo , Línea Celular , Fosforilación , Transporte de Proteínas , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA