Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Opt Express ; 32(6): 9343-9361, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571171

RESUMEN

Many chlorophyll-a (Chl-a) remote sensing estimation algorithms have been developed for inland water, and they are proposed always based on some ideal assumptions, which are difficult to meet in complex inland waters. Based on MIE scattering theory, this study calculated the optical properties of mineral particles under different size distribution and refractive index conditions, and the Hydrolight software was employed to simulate remote sensing reflectance in the presence of different mineral particles. The findings indicated that the reflectance is significantly influenced by the slope (j) of particle size distribution function and the imaginary part (n') of the refractive index, with the real part (n) having a comparatively minor impact. Through both a simulated dataset containing 18,000 entries and an in situ measured dataset encompassing 2183 data from hundreds of lakes worldwide, the sensitivities of band ratio (BR), fluorescence baseline height (FLH), and three-band algorithms (TBA) to mineral particles were explored. It can be found that BR showed the best tolerance to mineral particles, followed by TBA. However, when the ISM concentration is less than 30 g m-3, the influence of CDOM cannot be ignored. Additionally, a dataset of over 400 entries is necessary for developing the BR algorithm to mitigate the incidental errors arising from differences in data magnitude. And if the amount of developing datasets is less than 400 but greater than 200, the TBA algorithm is more likely to obtain more stable accuracy.

2.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37933819

RESUMEN

Reducing salt in food without compromising its quality is a huge challenge. Some review articles have been recently published on saltiness perception in some colloidal systems such as emulsions. However, no published reviews are available on saltiness perceptions of gel-based matrices, even though salt release and perception in these systems have been extensively studied. This article reviews the recent advances in salt perception in gel-based systems and provides a detailed analysis of the main factors affecting salt release. Strategies to enhance saltiness perception in gels and emulsion-filled gels are also reviewed. Saltiness perception can be improved through addition of biopolymers (proteins and polysaccharides) due to their ability to modulate texture and/or to adhere to or penetrate through the mucosal membrane on the tongue to prolong sodium retention. The composition of the product and the distribution of salt within the matrix are the two main factors affecting the perception of salty taste. Food structure re-design can lead to control the level of interaction between the salt and other components and change the structure, which in turn affects the mobility and release of the salt. The change of ingredients/matrix can affect the texture of the product, highlighting the importance of sensory evaluation.

3.
Crit Rev Food Sci Nutr ; 62(24): 6664-6681, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33792423

RESUMEN

Dairy-based powder had considerable development in the recent decade. Meanwhile, the increased variety of dairy-based powder led to the complex difficulties of rehydrating dairy-based powder, which could be the poor wetting or dissolution of powder. To solve these various difficulties, previous studies investigated the rehydration of powder by mechanical and chemical methods on facilitating rehydration, while strategies were designed to improve the rate-limiting rehydration steps of different powder. In this review, special emphasis is paid to the surface and structure of the dairy-based powder, which was accountable for understanding rehydration and the rate-limiting step. Besides, the advantage and disadvantage of methods employed in rehydration were described and compared. The achievement of the powder functionality was finally discussed and correlated with the rehydration methods. It was found that the surface and structure of dairy-based powder were decided by the components and production of powder. Post-drying methods like agglomeration and coating can tailor the surface and structure of powder afterwards to obtain better rehydration. The merit of the mechanical method is that it can be applied to rehydrate dairy-based powder without any addition of chemicals. Regarding chemical methods, calcium chelation is proved to be an effective chemical in rehydration casein-based powder.


Asunto(s)
Caseínas , Agua , Caseínas/química , Fluidoterapia , Tamaño de la Partícula , Polvos/química , Agua/química
4.
Crit Rev Food Sci Nutr ; 62(16): 4342-4355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33938773

RESUMEN

The focus of the global cheese industry on accessing new markets for cheese is currently driving a greater need for innovation in cheese products. Research to date suggests that, for example, East Asian consumers prefer cheeses that have a soft texture, with mild and milky flavors. Strategies for achieving such cheese characteristics are reviewed in this article. For example, incorporation of polysaccharides into cheese results in cheese with higher moisture levels and softer textures; this also results in modification of other properties such as adhesiveness, meltability and flavor release. Hydrated polysaccharides may be considered as filler particles within cheese matrices, and therefore filled gel models with suitable filler particles can be used to establish the effect of filler volume, size and surface properties on the fractural and rheological properties of cheese matrices, thus guiding the use of polysaccharides. Addition of plant proteins such as soy and pea protein can also result in cheeses with softer texture. Furthermore, it has been suggested that heat-induced gelation of soy or pea protein with casein results in a gel structure consisting of two independent protein gels, thus facilitating the design of bespoke structures by adjusting the ratio of the two proteins. Finally, it is proposed that incorporation of ingredients with sensory properties familiar to East and Southeast Asian consumers and with the capacity to achieve bespoke textures offer potential for the development of cheese products for consumers in these markets.


Asunto(s)
Queso , Proteínas de Guisantes , Asia Sudoriental , Proteínas de Plantas , Polisacáridos
5.
J Dairy Sci ; 105(11): 8750-8764, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36153160

RESUMEN

Particle breakage of dairy powders occurs easily during many processes, reducing the powder functionality. The characteristics of particles and the applied stress from processing conditions on the particles are 2 main factors that can be manipulated to reduce breakage. In this study, we explored the effect of whey protein and lactose contents on dynamic breakage in agglomerated whey protein-lactose powders to provide useful information, in terms of particle characteristics, for controlling unwanted dairy powder breakage. A series of model agglomerates with different whey protein:lactose ratios were produced under the same spray-drying conditions, through a pilot plant trial. We evaluated physical characteristics, composition, and structure of samples; analyzed dynamic breakage under different mechanical stresses; and investigated the rehydration and water adsorption properties of model powders before and after breakage. The particle size and irregularity of agglomerates with more lactose was significantly higher than of samples that contained more protein. This resulted in higher particle breakage during dynamic breakage for samples with more lactose. The breakage of agglomerates was affected by the moisture content of powders and fatigue, where particle breakage happens when mechanical loads, lower than the strength of particles, occur multiple times. Breakage changed the morphology and surface composition of particles and decreased particle size. It also decreased the dispersibility of powders and increased the wetting time of wettable samples but decreased the wetting time of powders with poor wettability. Breakage accelerated time-dependent crystallization and decreased the crystallization temperature but did not affect the glass transition temperature of samples. Thus, under the same drying conditions, composition of powders significantly affected breakage, mainly by altering the physical properties of their particles, which resulted in deteriorated functionality.


Asunto(s)
Lactosa , Agua , Animales , Lactosa/química , Polvos/química , Proteína de Suero de Leche , Tamaño de la Partícula
6.
J Dairy Res ; : 1-14, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35983800

RESUMEN

This study evaluated the impact of three distinct diets; perennial ryegrass (GRS), perennial ryegrass/white clover (CLV) and total mixed ration (TMR), on the sensory properties and volatile profile of whole milk powder (WMP). The samples were evaluated using a hedonic sensory acceptance test (n = 99 consumers) and by optimised descriptive profiling (ODP) using trained assessors (n = 33). Volatile profiling was achieved by gas chromatography mass spectrometry using three different extraction techniques; headspace solid phase micro-extraction, thermal desorption and high capacity sorptive extraction. Significant differences were evident in both sensory perception and the volatile profiles of the WMP based on the diet, with WMP from GRS and CLV more similar than WMP from TMR. Consumers scored WMP from CLV diets highest for overall acceptability, flavour and quality, and WMP from TMR diets highest for cooked flavour and aftertaste. ODP analysis found that WMP from TMR diets had greater caramelised flavour, sweet aroma and sweet taste, and that WMP from GRS diets had greater cooked aroma and cooked flavour, with WMP derived from CLV diets having greater scores for liking of colour and creamy aroma. Sixty four VOCs were identified, twenty six were found to vary significantly based on diet and seventeen of these were derived from fatty acids; lactones, alcohols, aldehydes, ketones and esters. The abundance of δ-decalactone and δ-dodecalactone was very high in WMP derived from CLV and GRS diets as was γ-dodecalactone derived from a TMR diet. These lactones appeared to influence sweet, creamy, and caramelised attributes in the resultant WMP samples. The differences in these VOC derived from lipids due to diet are probably further exacerbated by the thermal treatments used in WMP manufacture.

7.
J Dairy Sci ; 104(12): 12415-12426, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34482973

RESUMEN

This study explores the experiences of a cohort of young, educated, internationally mobile Chinese consumers with cheese and other dairy products, and how these experiences shape their behavior toward cheese products. In total, 41 Chinese students studying at an Irish university participated in 5 focus groups (n = 41, n = 7-10). Thematic analysis identified important factors that influence consumer behaviors regarding cheese products. Individuals' expectations toward cheese were embedded in their knowledge structures, which were constructed from previous experience. Participants had general positive expectations toward cheese due to associations with western-style foods and nostalgia; however, direct eating experience determined long-term behavior. When making a purchase decision, choice motives were weighed and negotiated to establish a fundamental driving factor for purchase. Perceived probability of choice motive fulfillment was important in determining purchase decisions, with many participants having low perceived ability to select cheese and limited motivation to engage with cheese due to limited perceived relevance of cheese to their daily food life. Individuals' innovativeness was an important factor that influences their openness to cheese products when moving beyond familiar foods. Opportunities exist such as using nostalgic cues as marketing tools to increase consumers' interest in cheese or combining cheese with Chinese food to increase perceived relevance of cheese to their daily food life. Providing information at point of purchase could reduce the disconnect between expectation and actual experience, and innovative cheese products may be developed to better fulfill important choice motives.


Asunto(s)
Queso , Comportamiento del Consumidor , Animales , China , Conducta de Elección , Preferencias Alimentarias , Motivación , Gusto
8.
Phytother Res ; 35(3): 1609-1620, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33103286

RESUMEN

Ischemic stroke is the most prevalent stroke condition in the world resulted in either a transient ischemic attack or long-lasting neurological problems due to the interrupted or reduced blood flow to the brain. Antrodia camphorata is a well-known medicinal mushroom native to Taiwan and is familiar due to its medicinal effects. The current study investigated the protective effect of A. camphorata-alcohol extracts (AC-AE) against cobalt (II) chloride (CoCl2 )-induced oxidative stress in vitro and ischemia/reperfusion-induced brain injury in vivo. The rats were pre-treated with AC-AE for 4 weeks. Our results showed that AC-AE reduced cell damage and decreased reactive oxygen species (ROS) production in C6 and PC12 cells under CoCl2 -induced hypoxic condition. AC-AE doses (385, 770, 1,540 mg/kg/day, 4 weeks) increased nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) mRNA expressions and decreased inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expressions in Sprague Dawley rat. Besides, it decreased stroke infarct size and increased the level of antioxidants in both brain and serum. Furthermore, it reduced the formation of malondialdehyde (MDA) after ischemia/reperfusion (I/R). Our results suggested that AC-AE exerted an effective reduction of ischemia stroke by regulating ROS production.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Polyporales/química , Animales , Masculino , Ratas , Ratas Sprague-Dawley
9.
Crit Rev Food Sci Nutr ; 60(10): 1651-1666, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30892058

RESUMEN

Gels are viscoelastic systems built up with a liquid phase entrapped in a three-dimensional network, which can behave as carriers for bioactive food ingredients. Many attempts have been made to design gel structures in the water phase (hydrogels, emulsion gels, bigels) or oil phase (organogels, bigels) in order to improve their delivery performances. Hydrogels are originated from proteins or polysaccharides, which are suitable for the delivery of hydrophilic ingredients. Organogels are mainly built up with the self-assembling of gelator molecules in the oil phase, and they offer good carriers for lipophilic ingredients. Emulsion gels and bigels, containing both aqueous and oil domains, can provide accommodations for lipophilic and hydrophilic ingredients simultaneously. Gel structures (e.g. rheology, texture, water holding capacity, swelling ratio) can be modulated by choosing different gelators, modifying gelation techniques, and the involvement of other ingredients (e.g. oils, emulsifiers, minerals, acids), which then alter the diffusion and release of the bioactive ingredients incorporated. Various studies have proved that gel-based delivery systems are able to improve the stability and bioavailability of many bioactive food ingredients. This review provides a state-to-art overview of different gel-based delivery systems, highlighting the significance of structure-functionality relationship, to provide advanced knowledge for the design of novel functional foods.


Asunto(s)
Ingredientes Alimentarios , Tecnología de Alimentos , Geles , Agua , Emulsiones , Hidrogeles , Aceites
10.
Opt Express ; 27(24): 34838-34856, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31878664

RESUMEN

Water optical clustering based on water color information is important for many ecological and environmental application studies, both regionally and globally. The fuzzy clustering method avoids the sharp boundaries in type-memberships produced by hard clustering methods, and thus presents its advantages. However, to make good use of the fuzzy clustering methods on water color spectra data sets, the determination of the fuzzifier parameter (m) of FCM (fuzzy c-means) is the key factor. Usually, the m is set to 2 by default. Unfortunately, this method assigned some membership degrees to non-belonging water type, failing to obtain the unitarity of cluster structure in some cases, especially in inland eutrophic water. To overcome this shortcoming, we proposed an improved FCM method (namely FCM-m) for water color spectra classification by optimizing the fuzzifier parameter. We collected an inland data set containing 1280 in situ spectral data and co-measured water quality parameters with a wide range of biogeochemical variability in China. Using FCM-m, seven spectrally distinct water optical clusters on Sentinel-3 OLCI (Ocean and Land Colour Imager) bands were obtained with the optimized fuzzifier (m=1.36), and the well-performed clustering result is assessed by the validated index (Fuzzy Silhouette Index=0.513). Also, the FCM-m-based soft classification framework was successfully applied to the atmospherically corrected OLCI images, which was evaluated by previous case studies. Besides, by testing FCM-m on three coastal and oceanic data sets, we verified that the optimized m should be adjusted based on the data set itself, and in general, the value gradually approaches 1 with the increase of the band number (or dimension). Finally, the effect of the improved method was tested by Chlorophyll-a concentration estimation. The results show that the algorithm------- blending by FCM-m performs better than that by original FCM, which is mainly because the FCM-m reduces the estimation error from non-belonging clusters by a stricter membership value assignation. To sum up, we believe that FCM-m is an adaptive algorithm, whose R codes are available at https://github.com/bishun945, and needs to be tested by more public data sets.

11.
Appl Microbiol Biotechnol ; 103(18): 7663-7674, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31297555

RESUMEN

The inhibitory effect of Bacillomycin D, a cyclic lipopeptide, on Rhizopus stolonifer colonization of cherry tomato was studied, and its possible mechanism of action was explored. Bacillomycin D showed a direct inhibitory effect on R. stolonifer spore germination and mycelial growth in vitro. It conferred both a direct inhibitory effect on R. stolonifer growth in cherry tomato in vivo and induced host resistance in cherry tomato. Moreover, Bacillomycin D treatment significantly increased the activities of plant defense-related enzymes, including chitinase (CHI), ß-1,3-glucanase (GLU), phenylalanine ammonia-lyase (PAL), and peroxidase (POD). Real-time PCR (RT-PCR) showed that defense-related genes involved in the salicylic acid defense signaling pathway and genes encoding pathogenesis-related proteins were up-regulated in Bacillomycin D treatment. Furthermore, Bacillomycin D-C16 resulted in direct inhibition and a remarkable induced resistance to R. stolonifer which was higher than as induced by Bacillomycin D-C14. Together, the data indicated that Bacillomycin D can control the growth of R. stolonifer through both the direct inhibition of the fungus and the activation of defense-related genes and enzymes in cherry tomato.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Frutas/microbiología , Rhizopus/efectos de los fármacos , Rhizopus/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Quitinasas/metabolismo , Frutas/enzimología , Glucano 1,3-beta-Glucosidasa/metabolismo , Solanum lycopersicum/enzimología , Peroxidasa/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo
12.
Mar Drugs ; 17(9)2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438457

RESUMEN

The phospholipids (PLs) of large yellow croaker (Pseudosciaena crocea, P. crocea) roe contain a high level of polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), which can lower blood lipid levels. In previous research, PLs of P. crocea roe were found able to regulate the accumulation of triglycerides. However, none of these involve the function of DHA-containing phosphatidylcholine (DHA-PC), which is the main component of PLs derived from P. crocea roe. The function by which DHA-PC from P. crocea roe exerts its effects has not yet been clarified. Herein, we used purified DHA-PC and oleic acid (OA) induced HepG2 cells to establish a high-fat model, and the cell activity and intracellular lipid levels were then measured. The mRNA and protein expression of Fatty Acid Synthase (FAS), Carnitine Palmitoyl Transferase 1A (CPT1A) and Peroxisome Proliferator-Activated Receptor α (PPARα) in HepG2 cells were detected via RT-qPCR and western blot as well. It was found that DHA-PC can significantly regulate triglyceride accumulation in HepG2 cells, the effect of which was related to the activation of PPARα receptor activity, upregulation of CPT1A, and downregulation of FAS expression. These results can improve the understanding of the biofunction of hyperlipidemia mediated by DHA-PC from P. crocea roe, as well as provide a theoretical basis for the utilization of DHA-PC from P. crocea roe as a functional food additive.


Asunto(s)
Aditivos Alimentarios/farmacología , Alimentos Funcionales , Metabolismo de los Lípidos/efectos de los fármacos , Perciformes , Triglicéridos/metabolismo , Animales , Ácidos Docosahexaenoicos/química , Ácidos Docosahexaenoicos/farmacología , Productos Pesqueros , Aditivos Alimentarios/química , Células Hep G2 , Humanos , Liposomas , Ácido Oléico/química , Ácido Oléico/farmacología , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacología
13.
J Dairy Sci ; 101(3): 1901-1914, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29274957

RESUMEN

Bacteriophage infection is a large factor in dairy industrial production failure on the basis of pure inoculation fermentation, and developing good commercial starter cultures from wild dairy products and improving the environmental vigor of starter cultures by enhancing their phage resistance are still the most effective solutions. Here we used a spontaneous isolation method to obtain bacteriophage-resistant mutants of Lactobacillus delbrueckii ssp. bulgaricus strains that are used in traditional Chinese fermented dairy products. We analyzed their phenotypes, fermentation characteristics, and resistance mechanisms. The results showed that bacteriophage-insensitive mutants (BIM) BIM8 and BIM12 had high bacteriophage resistance while exhibiting fermentation and coagulation attributes that were as satisfying as those of their respective parent strains KLDS1.1016 and KLDS1.1028. According to the attachment receptor detection, mutants BIM8 and BIM12 exhibited reduced absorption to bacteriophage phiLdb compared with their respective bacteriophage-sensitive parent strains because of changes to the polysaccharides or teichoic acids connected to their peptidoglycan layer. Additionally, genes, including HSDR, HSDM, and HSDS, encoding 3 subunits of a type I restriction-modification system were identified in their respective parent strains. We also discovered that HSDR and HSDM were highly conserved but that HSDS was variable because it is responsible for the DNA specificity of the complex. The late lysis that occurred only in strain KLDS1.1016 and not in strain KLDS1.1028 suggests that the former and its mutant BIM8 also may have an activatable restriction-modification mechanism. We conclude that the L. bulgaricus BIM8 and BIM12 mutants have great potential in the dairy industry as starter cultures, and their phage-resistance mechanism was effective mainly due to the adsorption interference and restriction-modification system.


Asunto(s)
Bacteriófagos , Productos Lácteos Cultivados/microbiología , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/virología , Fermentación , Lactobacillus delbrueckii/aislamiento & purificación , Lactobacillus delbrueckii/metabolismo , Mutación , Fenotipo
14.
J Dairy Res ; 85(3): 366-374, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30088465

RESUMEN

This Review describes the objectives and methodology of the DairyWater project as it aims to aid the Irish dairy processing industry in achieving sustainability as it expands. With the abolition of European milk quotas in March 2015, the Republic of Ireland saw a surge in milk production. The DairyWater project was established in anticipation of this expansion of the Irish dairy sector in order to develop innovative solutions for the efficient management of water consumption, wastewater treatment and the resulting energy use within the country's dairy processing industry. Therefore, the project can be divided into three main thematic areas: dairy wastewater treatment technologies and microbial analysis, water re-use and rainwater harvesting and environmental assessment. In order to ensure the project remains as relevant as possible to the industry, a project advisory board containing key industry stakeholders has been established. To date, a number of large scale studies, using data obtained directly from the Irish dairy industry, have been performed. Additionally, pilot-scale wastewater treatment (intermittently aerated sequencing batch reactor) and tertiary treatment (flow-through pulsed ultraviolet system) technologies have been demonstrated within the project. Further details on selected aspects of the project are discussed in greater detail in the subsequent cluster of research communications.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Productos Lácteos , Industria de Procesamiento de Alimentos/métodos , Animales , Industria Lechera/métodos , Ambiente , Irlanda , Lluvia , Aguas Residuales/química , Aguas Residuales/microbiología , Purificación del Agua/métodos
15.
Food Technol Biotechnol ; 56(4): 494-505, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30923446

RESUMEN

The present study evaluates the potential of encapsulation of polyphenolic antioxidants from rosemary (Rosmarinus officinalis L.) leaves by combining emulsification and spray drying techniques. To stabilize the emulsions and prepare samples suitable for use in dry products, double emulsions encapsulating rosemary polyphenolic extract and containing polyglycerol polyricinoleate (4%), whey protein isolates (2 and 4%) as emulsifiers, and maltodextrins (MDE 10 and 21) as enhancing coatings were subjected to spray drying. The obtained results show insignificant (p>0.05) effect of used maltodextrin type and protein content on mean particle size of double emulsions containing rosemary polyphenols. Morphology analyses showed that double emulsions were successfully prepared, spherical microcapsules were obtained after spray drying of double emulsions and double emulsion form was still preserved after rehydration of spray-dried microcapsules. Regardless of used maltodextrins, significantly (p>0.05) higher encapsulation efficiencies (EE) of total polyphenols (39.57 and 42.83%) in rehydrated samples were achieved when higher protein content (4% whey protein isolate) was used, indicating the major impact of protein content on EE of rosemary polyphenols. Also, using HPLC analysis, rosmarinic and caffeic acids, apigenin and luteolin derivatives were detected among specific polyphenols, where rosmarinic acid had notable encapsulation efficiency ranging from 62.15 to 67.43%. In this way, the obtained microcapsules encapsulating rosemary polyphenols could be easily blended with various dry mixtures, and serve for delivery in different functional products.

16.
Crit Rev Food Sci Nutr ; 57(15): 3173-3187, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26566035

RESUMEN

Food flavor is an important attribute of quality food, and it largely determines consumer food preference. Many food products exist as emulsions or experience emulsification during processing, and therefore, a good understanding of flavor release from emulsions is essential to design food with desirable flavor characteristics. Emulsions are biphasic systems, where flavor compounds are partitioning into different phases, and the releases can be modulated through different ways. Emulsion ingredients, such as oils, emulsifiers, thickening agents, can interact with flavor compounds, thus modifying the thermodynamic behavior of flavor compounds. Emulsion structures, including droplet size and size distribution, viscosity, interface thickness, etc., can influence flavor component partition and their diffusion in the emulsions, resulting in different release kinetics. When emulsions are consumed in the mouth, both emulsion ingredients and structures undergo significant changes, resulting in different flavor perception. Special design of emulsion structures in the water phase, oil phase, and interface provides emulsions with great potential as delivery systems to control flavor release in wider applications. This review provides an overview of the current understanding of flavor release from emulsions, and how emulsions can behave as delivery systems for flavor compounds to better design novel food products with enhanced sensorial and nutritional attributes.


Asunto(s)
Emulsionantes/administración & dosificación , Emulsiones , Aromatizantes/administración & dosificación , Gusto , Humanos , Aceites , Agua
17.
Crit Rev Food Sci Nutr ; 57(6): 1239-1255, 2017 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26055086

RESUMEN

Fresh foods like vegetables, fruits, and aquatic products have high water activity and they are highly heat-sensitive and easily degradable. Dehydration is one of the most common methods used to improve food shelf-life. However, drying methods used for food dehydration must not only be efficient and economic but also yield high-quality products based on flavor, nutrients, color, rehydration, uniformity, appearance, and texture. This paper reviews some new drying technologies developed for dehydration of vegetables, fruits, and aquatic products. These include: infrared drying, microwave drying, radio frequency drying, electrohydrodynamic drying, etc., as well as hybrid drying methods combining two or more different drying techniques. A comprehensive review of recent developments in high-quality drying of vegetables, fruits and aquatic products is presented and recommendations are made for future research.


Asunto(s)
Desecación , Manipulación de Alimentos , Conservación de Alimentos/métodos , Alimentos en Conserva , Frutas/química , Verduras/química , Color , Calidad de los Alimentos , Liofilización , Calor , Microondas , Gusto
18.
Blood Press ; 25(2): 117-22, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26556555

RESUMEN

Many studies have suggested that polymorphisms of three key genes (ACE, AGT and CYP11B2) in the renin-angiotensin-aldosterone system (RAAS) play important roles in the development of blood pressure (BP) salt sensitivity, but they have revealed inconsistent results. Thus, we performed a meta-analysis to clarify the association. PubMed and Embase databases were searched for eligible published articles. Fixed- or random-effect models were used to pool odds ratios and 95% confidence intervals based on whether there was significant heterogeneity between studies. In total, seven studies [237 salt-sensitive (SS) cases and 251 salt-resistant (SR) controls] for ACE gene I/D polymorphism, three studies (130 SS cases and 221 SR controls) for AGT gene M235T polymorphism and three studies (113 SS cases and 218 SR controls) for CYP11B2 gene C344T polymorphism were included in this meta-analysis. The results showed that there was no significant association between polymorphisms of these three polymorphisms in the RAAS and BP salt sensitivity under three genetic models (all p > 0.05). The meta-analysis suggested that three polymorphisms (ACE gene I/D, AGT gene M235T, CYP11B2 gene C344T) in the RAAS have no significant effect on BP salt sensitivity.


Asunto(s)
Angiotensinógeno/genética , Presión Sanguínea/efectos de los fármacos , Citocromo P-450 CYP11B2/genética , Hipertensión/genética , Peptidil-Dipeptidasa A/genética , Sistema Renina-Angiotensina/efectos de los fármacos , Cloruro de Sodio Dietético/administración & dosificación , Determinación de la Presión Sanguínea , Estudios de Casos y Controles , Expresión Génica , Humanos , Hipertensión/diagnóstico , Hipertensión/fisiopatología , Modelos Genéticos , Oportunidad Relativa , Polimorfismo Genético
19.
Ultrason Sonochem ; 102: 106755, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38219547

RESUMEN

Milk fat globules or milk fat globule membranes (MFGs/MFGM) have been added to the infant formula to fortify the phospholipids and narrow the nutritional gap from breast milk. The main aim of this study was to profile the interfacial and thermal properties of MFGs/MFGM prepared from ultrasonicated bovine milk. Bovine milk was sonicated at ultrasonic intensities of 20 kHz and 40 kHz independently or synchronously with the duration time of 0 min (control), 5 min, 10 min, and 15 min (work/rest cycles = 5 s: 3 s). Ultrasonic treatments at 20 kHz/ 5 min and 20 + 40 kHz/ 5 min improved the volume density (%) of smaller particles (1-10 µm) while significantly decreasing the surface hydrophobicity (H0) (p < 0.05). 40 kHz/5 min samples showed significantly higher ζ- potential than the other samples (p < 0.05), which might be because more negative charges were detected. In comparison with control samples, ultrasonic treatments decreased the interfacial tension (π) between the air and MFGs/MFGM liquid phase. 20 kHz ultra-sonicated treatments decreased the diffusion rate (k diff) of MFGs/MFGM interfacial compositions significantly as the duration prolonged from 5 min to 15 min (p < 0.05) but did not affect the adsorption or penetration rate (k a) (p > 0.05). X-ray diffraction (XRD) results showed that α-crystal peaks only existed in control and ultrasonicated 5 min samples but disappeared in all 15 min samples. According to the different scanning calorimetry (DSC), one or two new exothermic events (in the range of 17.29 - 18.81 â„ƒ and 22.14 - 25.21 â„ƒ) appeared after ultrasonic treatments, which, however, were not found in control samples. Ultrasonic treatments resulted in the low-melting fractions (LMF) (TM1) peaks undetectable in MFGs/MFGM samples in which only peaks of medium-melting fractions (MMF) (TM2) and high-melting fractions (HMF) (TM3) were detected. Compared with the control, both enthalpies of crystallisation (ΔHC) and melting (ΔHM) decreased in ultrasonicated samples. In conclusion, ultrasonic treatment affects the interfacial and thermal properties of MFGs/MFGM.


Asunto(s)
Glicoproteínas , Leche , Humanos , Lactante , Femenino , Animales , Leche/química , Glucolípidos , Gotas Lipídicas
20.
Food Res Int ; 187: 114435, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763682

RESUMEN

Interfaces play essential roles in the stability and functions of emulsion systems. The quick development of novel emulsion systems (e.g., water-water emulsions, water-oleogel emulsions, hydrogel-oleogel emulsions) has brought great progress in interfacial engineering. These new interfaces, which are different from the traditional water-oil interfaces, and are also different from each other, have widened the applications of food emulsions, and also brought in challenges to stabilize the emulsions. We presented a comprehensive summary of various structured interfaces (stabilized by mixed-layers, multilayers, particles, nanodroplets, microgels etc.), and their characteristics, and designing strategies. We also discussed the applicability of these interfaces in stabilizing liquid-liquid (water-oil, water-water, oil-oil, alcohol-oil, etc.), liquid-gel, and gel-gel emulsion systems. Challenges and future research aspects were also proposed regarding interfacial engineering for different emulsions. Emulsions are interface-dominated materials, and the interfaces have dynamic natures, as the compositions and structures are not constant. Biopolymers, particles, nanodroplets, and microgels differed in their capacity to get absorbed onto the interface, to adjust their structures at the interface, to lower interfacial tension, and to stabilize different emulsions. The interactions between the interface and the bulk phases not only affected the properties of the interface, but also the two phases, leading to different functions of the emulsions. These structured interfaces have been used individually or cooperatively to achieve effective stabilization or better applications of different emulsion systems. However, dynamic changes of the interface during digestion are only poorly understood, and it is still challenging to fully characterize the interfaces.


Asunto(s)
Emulsiones , Geles , Emulsiones/química , Geles/química , Agua/química , Aceites/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA